EMERSON
 Industrial Automation

Technical Data Unimotor 面 and

High performance AC brushless servo motors

Control Techniques Dynamics Limited

Control Techniques Dynamics is renowned for its innovations in the industrial servo, aerospace and defence markets since 1962 and is a member of the Emerson (USA) group of companies.

Our long experience provides a strong base to develop cost effective solutions for a spectrum of applications from machine tools, mechanical handling, pick and place machinery; through to specialised mechanisms a nd actuators for the avionics industry.

Our Research and Development team works closely with leading universities and, using our own proprietary software, designs innovative products for a wide range of demanding environments.

Control Techniques Dynamics offers continuous advances in product range, backed with the expertise and flexibility to meet the demands of your applications - now and in the future.

Contents

		Page.				Page.
1	Introduction to Unimotor fm	4		4.8	Calculating load torque	42
	1.1 Overview	4		4.9	Understanding motor heating effects	43
	1.2 Ordering information	6		4.10	Motor derating	44
	1.3 Ratings	8		4.11	Motor derate factors	44
	1.4 Peak torque information	13		4.12	Feedback selection	45
	1.5 Dimensions	14		4.13	Feedback terminology	46
2	Introduction to Unimotor fm fan blown motors	22		4.1	Brake specification	48
	2.1 Overview	22		4.15	Radial load	49
	2.2 Quick reference table	22		4.16	Bearing life and output shaft strength	54
	2.3 Peak torque information	23	5	Mo	and signal cables	60
	2.4 IP Ratings	23		5.1	Cable information	61
	2.5 Ordering information	24		5.2	Motor connector details	62
	2.6 Dimensions and ratings	26		5.3	Maximum cable length	63
3	Introduction to Unimotor hd	32		5.4	Power cable range	64
	3.1 Overview	32			lecting connecto	
	3.2 Unimotor hd ordering code information	33		5.5	Selecting connector kits	71
	3.3 Quick reference table	33		5.6	Unimotor signal and power extension cables	72
	3.4 Dimensions and ratings	34		5.7	DS/MS conversion cables	73
	3.4 Dimensions and ratings	34	6	Performance graphs		74
4	Generic information	38		6.1	Unimotor fm	75
	4.1 Performance definitions	38		6.2	Unimotor hd	96
	4.2 Thermal test conditions	38		6.3	Unimotor fm fan blown	98
	4.3 Nameplate	39	7	Pulley installation		103
	4.4 Motor selection	40	8	Declarations		104
	4.5 Checklist of operating details	40	8			104
	4.6 Points to consider	41		Gen		107
	4.7 Special motor requests	41				

1 Introduction to Unimotor fm

1.1 Overview

Unimotor in is a high performance brushless AC servo motor range matched for use with Control Techniques drives. ' $\frac{10}{}$ D' stands for flexible motor, designed to accommodate a wide range of applications. The motors are available in seven frame sizes with various mounting arrangements and motor lengths.

1.1.1 Reliability and innovation

Unimotor finib is designed using a proven development process that prioritises innovation and reliability. This process has resulted in Control Techniques' market leading reputation for both performance and quality.

1.1.2 Matched motor and drive combinations

Control Techniques motors and drives are designed to function as an optimised system. Unimotor 1 it is the perfect partner for Unidrive $\mathscr{C D}$, Digitax ST and Epsilon EP drives.

1.1.3 Features

Unimotor 810 is suitable for a wide range of industrial applications, due to its extensive range of features
\rightarrow Torque range: from 0.72 Nm to 136 Nm
\rightarrow Standard and high energy parking brakes
\rightarrow Numerous connector variants, e.g. vertical, 90° low profile, 90° rotatable and hybrid box on frame size 250
\rightarrow Variety of flange possibilities (IEC/NEMA)
\rightarrow Various shaft diameters; keyed or plain
\rightarrow IP65 conformance; sealed against water spray and dust when mounted and connected
\rightarrow Low inertia for high dynamic performance; high inertia option available
\rightarrow World class performance
\rightarrow Supported by rigorous testing for performance and reliability
\rightarrow Optional high peak torque motors; up to 5 times stall torque
\rightarrow Winding voltages of 400 V and 220 V
\rightarrow Rated speeds include 1500 rpm, 2000 rpm, 3000 rpm, $4000 \mathrm{rpm}, 6000 \mathrm{rpm}$ and others available

1.1.4 Faster set-up, optimised performance

When a Control Techniques servo drive is connected to a Unimotor Silib fitted with a SinCos or Absolute encoder, it can recognise and communicate with the motor to obtain the "electronic nameplate" data. This motor data can then be used to automatically optimise the drive settings. This feature simplifies commissioning and maintenance, ensures consistent performance and saves time.

1.1.5 Accuracy and resolution to suit your application requirements

Choosing the right feedback device for your application is critical in getting optimum performance. Unimotor shem has a range of feedback options that offer different levels of accuracy and resolution to suit most applications:
\rightarrow Resolver: robust for extreme applications and conditions - low accuracy, medium resolution
\rightarrow Incremental encoder: high accuracy, medium resolution
\rightarrow Inductive absolute: medium accuracy, medium resolution
\rightarrow Optical SinCos/Absolute: high accuracy, high resolution
\rightarrow Single turn and multi-turn: Hiperface and EnDAT protocols supported

1.1.6 Ideal for retrofit

Unimotor in is an ideal retrofit choice with features to ensure it can integrate easily with your existing servo motor applications. Unimotor oim has been designed so that existing Unimotor customers can easily migrate to the new platform. All connector interface types and mounting dimensions remain the same. If you are planing to retrofit your system, Unimotor in the obvious choice.

1.1.7 Custom built motors

As part of our commitment to you, we can design special products to meet your application specific requirements.

1.1.8 Wide range of accessories

Unimotor ofili has a wide range of accessories to meet all your system requirements:
\rightarrow Feedback and power cables for static and dynamic applications
\rightarrow Fan boxes
\rightarrow Gearboxes
\rightarrow Cable connectors

1.1.9 Torque performance \square Peak \square Stall at 220 V nominal \square Stall at 400 V nominal

1.1.10 Conformance and standards

FM 30610

Ordering information

Use the information below in the illustration to create an order code for a Unimotor \&imp

Additional options - available upon request

Additional options are available upon request but may require a longer lead time to complete, please check with the Drive Centre/Distributor for details.

Frame size	Motor voltage	Peak torque selection	Stator length	Winding speed	Brake	Connection type
	055-250 Frame	055 Frame				
055				XX $=$ Special	X $=$ Special	C = Power 90° rotatable and
075						Signal vertical
095						$\mathrm{V}=$ Power and Signal vertical
115						X = Special
142						075-115 Frame
190						A $=$ Power and Signal 90° fixed
250						B $=$ Power and Signal 90° rotatable $\mathrm{C}=$ Power 90° rotatable and Signal vertical X = Special
						142-190 Frame
						A $=$ Power and Signal 90° fixed
						B $=$ Power and Signal 90° rotatable $\mathrm{C}=$ Power 90° rotatable and Signal vertical H = Hybrid box
						X = Special
						250 Frame
						$\mathrm{V}=$ Power and Signal vertical

A	CA		A	100		
Output shaft	Feedback device		Inertia	PCD		
055-250 Frame	055 Frame		055 Frame	055 Frame		
A = Keyed	AR $=$ Resolver		A = Standard	063	11.0	A-C
B = Plain shaft	CP = Incremental Encoder	4096 ppr	075-190 Frame	075 Frame		
	MP = Incremental Encoder (Std)	2048 ppr	A = Standard	075	11.0	A
	EM = Inductive Absolute Multi-turn	EQI 1130	B $=$ High		14.0	B-D
	FM = Inductive Absolute Single turn	ECI 1118	250 Frame		5 Fram	
	TL = Optical SinCos Multi-turn	SKM 36	A = Standard	100	14.0	A
	UL = Optical SinCos Single turn	SKS 36			19.0	B-E
	075-142 Frame			115 Frame		
	AE $=$ Resolver			115	19.0	A-C
	CA = Incremental Encoder (Std)	4096 ppr			24.0	D-E
	EB = Optical Absolute Multi-turn	EQN 1325			2 Fram	
	FB = Optical Absolute Single turn	ECN 1313		165	24.0	A-E
	EC = Inductive Absolute Multi-turn	EQI 1331			0 Fram	
	FC = Inductive AbsoluteSingle turn	ECI 1319		215	32.0	A-H
	LC = Inductive Absolute Multi-turn ${ }^{1}$	EQI 1331			0 Fram	
	NC = Inductive Absolute Single turn ${ }^{1}$	ECI 1319		300	48.0	D-F
	RA = Optical SinCos Multi-turn	SRM 50				
	SA = Optical SinCos Single turn	SRS 50				
	190-250 Frame					
	AE $=$ Resolver					
	CA = Incremental Encoder	4096 ppr				
	EB $=$ Optical Absolute Multi-turn	EQN 1325				
	FB = Optical Absolute Single turn	ECN 1313				
	RA = Optical SinCos Multi-turn	SRM 50				
	SA = Optical SinCos Single turn	SRS 50				

Output shaft	Feedback device	Inertia	PCD***		Shaft diameter	
075-250 Frame	075-250 Frame	055-250 Frame	055 Frame			
F = Key and Half key supplied separately	MA = Incremental Encoder ${ }^{2}$ 2048 ppr	$\mathrm{X}=$ Special	070		9.0	
	GB = Optical Absolute Multi turn EQN 1337				14.0	Max
	HB = Optical Absolute Single turn ECN 1325				XXX =	Special
X = Special	WB = Optical Absolute Single turn ECN 1313					
	XX = Special		080		19.0	Max
			085		XXX =	Special
	Notes					
			098		22.0	Max
	${ }^{2}$ Not available on the 190 or 250 frame		115		XXX =	Special
	Motors with X in the part number will require the additional					
	ending -S*** as these are speical customer designed motors.		130		24.0	Max
	Motors with the ending -G*** are motors that have				XXX =	Special
	gearboxes supplied and assembled to the motor.					
	Optional PCD's will have a different register diameter from the standard motors.		149		$\begin{gathered} 32.0 \\ \text { XXX }= \end{gathered}$	Max Special
				N/A	42.0	Max
					XXX =	Special

1.3 Ratings

1.3.1 3 Phase VPWM drives 200-240Vrms

$\Delta \mathrm{t}=100^{\circ} \mathrm{C}$ winding $40^{\circ} \mathrm{C}$ maximum ambient All data subject to $+/-10 \%$ tolerance

Motor frame size (mm) Frame length		055E2			075E2				095 E 2				
		A	B	C	A	B	C	D	A	B	C	D	E
Contin	us stall torque (Nm)	0.72	1.18	1.65	1.2	2.2	3.1	3.9	2.3	4.3	5.9	7.5	9.0
Standard (2) peak torqu	election max (Nm)	2.88	4.72	6.60	3.6	6.6	9.3	11.7	6.9	12.9	17.7	22.5	27.0
High (P) peak torq	selection $\max (\mathrm{Nm})$	N/A	N/A	N/A	6	11	15.5	19.5	10.4	19.4	26.6	33.8	40.5
	dard inertia (kgcm²)	0.12	0.23	0.34	0.7	1.2	1.6	2.0	1.8	2.9	4.0	5.1	6.2
	High inertia (kgcm²)				1.1	1.5	2.0	2.4	3.7	4.8	5.9	7.0	8.1
Winding t	rmal time const. (s)	34.0	38.0	42.0	81	74	94	100	172	168	183	221	228
Standard motor	eight unbraked (kg)	1.20	1.50	1.80	3.60	4.40	5.20	6.00	5.10	6.30	7.50	8.70	9.90
Standard mot	weight braked (kg)	1.60	1.90	2.20	4.10	4.90	5.70	6.50	5.70	6.90	8.70	9.30	10.50
Rated speed 2000 (rpm)	$\begin{array}{r} \mathrm{Kt}(\mathrm{Nm} / \mathrm{A})= \\ \mathrm{Ke}(\mathrm{~V} / \mathrm{krpm})= \end{array}$				$\begin{aligned} \mathrm{Kt}(\mathrm{Nm} / \mathrm{A}) & =1.40 \\ \mathrm{Ke}(\mathrm{~V} / \mathrm{krpm}) & =85.50 \end{aligned}$								
	Rated torque (Nm)	C/D	C/D	C/D	1.1	2.1	3.0	3.8	2.2	4.0	5.5	6.9	8.2
	Stall current (A)				0.9	1.6	2.3	2.8	1.7	3.1	4.3	5.4	6.5
	Rated power (kW)				0.23	0.44	0.63	0.80	0.46	0.84	1.15	1.45	1.72
	R (ph-ph) (Ω)				45.80	15.30	8.52	5.72	20.69	6.24	3.16	2.31	1.71
	$\mathrm{L}(\mathrm{ph}-\mathrm{ph})(\mathrm{mH})$				74.10	34.71	21.50	16.16	72.40	22.50	13.73	10.79	8.70
Rated speed 3000 (rpm)	$\begin{aligned} \mathrm{Kt}(\mathrm{Nm} / \mathrm{A}) & = \\ \mathrm{Ke}(\mathrm{~V} / \mathrm{krpm}) & = \end{aligned}$	$\begin{gathered} 0.74 \\ 45.00 \end{gathered}$	$\begin{gathered} 0.87 \\ 52.50 \end{gathered}$	$\begin{aligned} & 0.91 \\ & 55.00 \end{aligned}$	$\begin{aligned} \mathrm{Kt}(\mathrm{Nm} / \mathrm{A}) & =0.93 \\ \mathrm{Ke}(\mathrm{~V} / \mathrm{krpm}) & =57.00 \end{aligned}$								
	Rated torque (Nm)	0.70	1.05	1.48	1.1	2.0	2.8	3.5	2.0	3.9	5.4	6.8	8.1
	Stall current (A)	0.97	1.36	1.81	1.3	2.4	3.4	4.2	2.5	4.7	6.4	8.1	9.7
	Rated power (kW)	0.22	0.33	0.46	0.35	0.63	0.88	1.10	0.63	1.23	1.70	2.14	2.54
	R (ph-ph) (Ω)	28.00	14.10	9.50	15.91	6.22	3.35	2.37	8.03	2.68	1.35	1.03	0.77
	$\mathrm{L}(\mathrm{ph}-\mathrm{ph})(\mathrm{mH})$	50.00	32.00	23.00	30.33	14.74	9.54	7.08	22.04	8.70	6.10	4.48	3.99
Rated speed 4000 (rpm)	$\begin{aligned} \mathrm{Kt}(\mathrm{Nm} / \mathrm{A}) & = \\ \mathrm{Ke}(\mathrm{~V} / \mathrm{krpm}) & = \end{aligned}$				$\begin{aligned} \mathrm{Kt}(\mathrm{Nm} / \mathrm{A}) & =0.72 \\ \mathrm{Ke}(\mathrm{~V} / \mathrm{krpm}) & =44.00 \end{aligned}$								
	Rated torque (Nm)	C/D	C/D	C/D	1.0	1.7	2.3	2.9	1.8	3.0	4.0	4.9	5.7
	Stall current (A)				1.7	3.1	4.4	5.5	3.2	6.0	8.2	10.5	12.5
	Rated power (kW)				0.42	0.71	0.96	1.21	0.75	1.26	1.68	2.05	2.39
	R (ph-ph) (Ω)				12.10	4.05	2.30	1.48	5.15	1.64	0.92	0.62	0.42
	$\mathrm{L}(\mathrm{ph}-\mathrm{ph})(\mathrm{mH})$				19.60	8.88	5.85	4.20	13.00	7.28	3.80	2.75	2.18
Rated speed 6000 (rpm)	$\begin{array}{r} \mathrm{Kt}(\mathrm{Nm} / \mathrm{A})= \\ \mathrm{Ke}(\mathrm{~V} / \mathrm{krpm})= \end{array}$	$\begin{gathered} 0.45 \\ 27.00 \end{gathered}$	$\begin{gathered} 0.43 \\ 26.00 \end{gathered}$	$\begin{gathered} 0.48 \\ 29.00 \end{gathered}$	$\begin{aligned} \mathrm{Kt}(\mathrm{Nm} / \mathrm{A}) & =0.47 \\ \mathrm{Ke}(\mathrm{~V} / \mathrm{krpm}) & =28.50 \end{aligned}$								
	Rated torque (Nm)	0.68	0.90	1.20	0.9	1.6	2.1	2.6	1.3	2.1	2.8	C/D	C/D
	Stall current (A)	1.61	2.74	3.44	2.6	4.7	6.6	8.3	4.9	9.2	12.6		
	Rated power (kW)	0.43	0.57	0.75	0.57	1.01	1.32	1.63	0.82	1.32	1.76		
	R (ph-ph) (Ω)	8.50	3.60	2.40	5.20	1.77	0.95	0.65	2.00	0.67	0.39		
	$\mathrm{L}(\mathrm{ph}-\mathrm{ph})(\mathrm{mH})$	16.00	8.20	6.30	8.30	3.70	3.10	1.86	5.51	2.58	1.70		
C/D Consult Drive Centre/Distributor			Stall torque, rated torque and power relate to maximum continuous operation tested in a $20^{\circ} \mathrm{C}$ ambient at 12 kHz drive switching frequency					Control Techniques have an ongoing process of development and reserve the right to change the specification without notice					
N/A Not available													

115 E 2					142 E 2					190 E 2							
A	B	C	D	E	A	B	C	D	E	A	B	C	D	E	F	G	H
3.5	6.6	9.4	12.4	15.3	5.7	10.8	15.3	19.8	23.4	C/D	21.8	C/D	41.1	C/D	58.7	C/D	73.2
10.5	19.8	28.2	37.2	45.9	17.1	32.4	45.9	59.4	70.2		65.4		123.0		176.0		219.0
14	26.4	37.6	49.6	61.2	22.8	43.2	61.2	79.2	93.6	N/A							
4.4	6.7	9.0	11.4	13.8	9.0	15.6	22.2	28.8	35.4		48.7		86.4		123.1		161.8
9.5	11.8	14.1	16.6	18.9	23.3	29.9	36.5	43.1	49.7		93.9		131.6		168.3		207.0
175	185	198	217	241	213	217	275	301	365		240		242		319		632
7.80	9.70	11.60	13.50	15.40	10.50	13.30	16.10	18.90	21.70		25.30		33.90		42.50		51.30
9.00	10.90	12.80	14.70	17.20	12.20	15.00	17.80	19.60	23.40		27.30		35.90		44.50		53.10
3.2	6.1	8.7	10.8	14.0	5.3	10.3	14.6	18.4	21.3	C/D	20.0	C/D	36.9	C/D	50.4	C/D	C/D
2.5	4.8	6.8	8.9	11.0	4.1	7.8	11.0	14.2	16.8		15.6		29.4		42.1		
0.67	1.28	1.82	2.26	2.93	1.11	2.16	3.06	3.85	4.46		4.19		7.73		10.6		
8.33	2.82	1.51	0.99	0.72	4.28	1.33	0.66	0.45	0.32		0.50		0.15		0.10		
43.50	14.91	9.89	7.11	5.77	26.74	11.53	7.31	5.55	4.40		7.77		2.50		2.65		
3.0	5.5	8.1	10.4	12.6	4.9	9.0	12.2	15.8	N/A	C/D	19.2	C/D	33.0	C/D	C/D	C/D	N/A
3.8	7.1	10.2	13.4	16.5	6.2	11.7	16.5	21.3			23.5		44.2				
0.94	1.73	2.54	3.27	3.96	1.54	2.83	3.83	4.96			6.03		10.4				
3.70	1.30	0.73	0.47	0.37	1.90	0.26	0.23	0.22			0.17		0.06				
15.94	7.23	4.82	3.37	3.49	11.87	4.05	2.49	3.32			2.62		1.26				
2.5	4.7	6.3	7.5	C/D	3.6	7.0	C/D	N/A									
4.9	9.2	13.1	17.3		8.0	15.0											
1.05	1.97	2.64	3.14		1.51	2.93											
2.07	0.70	0.44	0.29		1.20	0.38											
8.57	4.34	3.57	2.53		9.45	3.47											
2.2	4.0	C/D	N/A	N/A	2.9	C/D	N/A										
7.5	14.1				12.2												
1.38	2.51				1.82												
0.96	0.30				0.49												
3.43	2.09				3.96												

EMERSON
Industrial Automation

1.3.2 3 Phase VPWM drives $380-480$ Vrms

$\Delta \mathrm{t}=100^{\circ} \mathrm{C}$ winding $40^{\circ} \mathrm{C}$ maximum ambient All data subject to $+/-10 \%$ tolerance

Motor frame size (mm)		055U2			075U2				095U2				
	Frame length	A	B	C	A	B	C	D	A	B	C	D	E
Contin	us stall torque (Nm)	0.72	1.18	1.65	1.2	2.2	3.1	3.9	2.3	4.3	5.9	7.5	9.0
Standard (2) peak torq	selection max (Nm)	2.88	4.72	6.60	3.6	6.6	9.3	11.7	6.9	12.9	17.7	22.5	27.0
High (P) peak torq	selection max (Nm)	N/A	N/A	N/A	6	11	15.5	19.5	10.4	19.4	26.6	33.8	40.5
	dard inertia (kgcm^{2})	0.12	0.23	0.34	0.7	1.2	1.6	2.0	1.8	2.9	4.0	5.1	6.2
	High inertia (kgcm^{2})				1.1	1.5	2.0	2.4	3.7	4.8	5.9	7.0	8.1
Winding	ermal time const. (s)	34.0	38.0	42.0	81	74	94	100	172	168	183	221	228
Standard moto	eight unbraked (kg)	1.20	1.50	1.80	3.60	4.40	5.20	6.00	5.10	6.30	7.50	8.70	9.90
Standard mo	weight braked (kg)	1.60	1.90	2.20	4.10	4.90	5.70	6.50	5.70	6.90	8.70	9.30	10.50
Rated speed 2000 (rpm)	$\begin{aligned} \mathrm{Kt}(\mathrm{Nm} / \mathrm{A}) & = \\ \mathrm{Ke}(\mathrm{~V} / \mathrm{krpm}) & = \end{aligned}$				$\begin{aligned} \mathrm{Kt}(\mathrm{Nm} / \mathrm{A}) & =2.40 \\ \mathrm{Ke}(\mathrm{~V} / \mathrm{krpm}) & =147.00 \end{aligned}$								
	Rated torque (Nm)	C/D	C/D	C/D	1.1	2.1	3.0	3.8	2.2	4.0	5.5	6.9	8.2
	Stall current (A)				0.5	1.0	1.3	1.7	1.0	1.8	2.5	3.2	3.8
	Rated power (kW)				0.23	0.44	0.63	0.80	0.46	0.84	1.15	1.45	1.72
	R (ph-ph) (Ω)				144.00	48.20	25.00	15.70	64.00	17.00	9.90	6.00	4.30
	L (ph-ph) (mH)				214.00	99.20	59.20	44.70	202.00	54.50	36.50	25.60	18.90
Rated speed 3000 (rpm)	$\begin{aligned} \mathrm{Kt}(\mathrm{Nm} / \mathrm{A}) & = \\ \mathrm{Ke}(\mathrm{~V} / \mathrm{krpm}) & = \end{aligned}$	$\begin{gathered} 0.74 \\ 45.00 \end{gathered}$	$\begin{aligned} & 1.49 \\ & 90.00 \end{aligned}$	$\begin{gathered} 1.65 \\ 100.00 \end{gathered}$	$\begin{aligned} \mathrm{Kt}(\mathrm{Nm} / \mathrm{A}) & =1.60 \\ \mathrm{Ke}(\mathrm{~V} / \mathrm{krpm}) & =98.00 \end{aligned}$								
	Rated torque (Nm)	0.70	1.05	1.48	1.1	2.0	2.8	3.5	2.0	3.9	5.4	6.8	8.1
	Stall current (A)	0.97	0.79	1.00	0.8	1.4	2.0	2.5	1.5	2.7	3.7	4.7	5.7
	Rated power (kW)	0.22	0.33	0.46	0.35	0.63	0.88	1.10	0.63	1.23	1.70	2.14	2.54
	R (ph-ph) (Ω)	28.00	45.00	31.00	60.80	20.10	10.50	7.50	24.50	6.80	4.00	2.74	2.00
	$\mathrm{L}(\mathrm{ph}-\mathrm{ph})(\mathrm{mH})$	50.00	100.00	75.00	98.40	41.80	27.60	19.70	57.90	24.30	15.50	13.62	8.50
Rated speed 4000 (rpm)	$\begin{aligned} \mathrm{Kt}(\mathrm{Nm} / \mathrm{A}) & = \\ \mathrm{Ke}(\mathrm{~V} / \mathrm{krpm}) & = \end{aligned}$				$\begin{aligned} \mathrm{Kt}(\mathrm{Nm} / \mathrm{A}) & =1.20 \\ \mathrm{Ke}(\mathrm{~V} / \mathrm{krpm}) & =73.50 \end{aligned}$								
	Rated torque (Nm)	C/D	C/D	C/D	1.0	1.7	2.3	2.9	1.8	3.0	4.0	4.9	5.7
	Stall current (A)				1.0	1.9	2.6	3.3	2.0	3.6	5.0	6.3	7.5
	Rated power (kW)				0.42	0.71	0.96	1.21	0.75	1.26	1.68	2.05	2.39
	R (ph-ph) (Ω)				36.80	10.50	6.30	4.20	12.70	4.08	2.10	1.50	1.03
	$\mathrm{L}(\mathrm{ph}-\mathrm{ph})(\mathrm{mH})$				54.90	24.80	14.90	10.80	31.50	13.60	8.50	6.30	4.80
Rated speed 6000 (rpm)	$\begin{aligned} \mathrm{Kt}(\mathrm{Nm} / \mathrm{A}) & = \\ \mathrm{Ke}(\mathrm{~V} / \mathrm{krpm}) & = \end{aligned}$	$\begin{gathered} 0.74 \\ 45.00 \end{gathered}$	$\begin{gathered} 0.79 \\ 47.50 \end{gathered}$	$\begin{gathered} 0.83 \\ 50.00 \end{gathered}$	$\begin{aligned} \mathrm{Kt}(\mathrm{Nm} / \mathrm{A}) & =0.80 \\ \mathrm{Ke}(\mathrm{~V} / \mathrm{krpm}) & =49.00 \end{aligned}$								
	Rated torque (Nm)	0.68	0.90	1.20	0.9	1.6	2.1	2.6	1.3	2.1	2.8	C/D	C/D
	Stall current (A)	0.97	1.50	2.00	1.5	2.8	3.9	4.9	2.9	5.4	7.4		
	Rated power (kW)	0.43	0.57	0.75	0.57	1.01	1.32	1.63	0.82	1.32	1.76		
	R (ph-ph) (Ω)	28.00	10.70	7.80	15.00	5.00	2.66	1.90	5.45	1.82	1.05		
	$\mathrm{L}(\mathrm{ph}-\mathrm{ph})(\mathrm{mH})$	50.00	25.00	20.00	24.00	10.60	6.80	4.80	14.10	6.00	3.80		

C/D Consult Drive Centre/Distributor

N/A Not available

The information contained in this specification is for guidance only and does not form part of any contract

Stall torque, rated torque and power relate to maximum continuous operation tested in a $20^{\circ} \mathrm{C}$ ambient at 12 kHz drive switching frequency

Control Techniques have an ongoing process of development and reserve the right to change the specification without notice

All other figures relate to a $20^{\circ} \mathrm{C}$ motor temperature.
Maximum intermittent winding temperature is $140^{\circ} \mathrm{C}$

115 U 2					142 U 2					190 U 2							
A	B	C	D	E	A	B	C	D	E	A	B	C	D	E	F	G	H
3.5	6.6	9.4	12.4	15.3	5.7	10.8	15.3	19.8	23.4	9.6	21.8	31.1	41.1	50.6	58.7	66.0	73.2
10.5	19.8	28.2	37.2	45.9	17.1	32.4	45.9	59.4	70.2	28.8	65.4	93.3	123.0	151.6	176.0	198.0	219.0
14	26.4	37.6	49.6	61.2	22.8	43.2	61.2	79.2	93.6	N/A							
4.4	6.7	9.0	11.4	13.8	9.0	15.6	22.2	28.8	35.4	29.9	48.7	67.5	86.4	105.0	123.1	142.9	161.8
9.5	11.8	14.1	16.6	18.9	23.3	29.9	36.5	43.1	49.7	75.1	93.9	112.7	131.6	150.2	168.3	188.1	207.0
175	185	198	217	241	213	217	275	301	365	217	240	241	242	281	319	476	632
7.80	9.70	11.60	13.50	15.40	10.50	13.30	16.10	18.90	21.70	21.00	25.30	29.60	33.90	38.20	42.50	46.80	51.30
9.00	10.90	12.80	14.70	17.20	12.20	15.00	17.80	19.60	23.40	23.00	27.30	31.60	35.90	40.20	44.50	48.80	53.10
3.2	6.1	8.7	10.8	14.0	5.3	10.3	14.6	18.4	21.3	9.3	20.0	28.4	36.9	43.8	50.4	53.0	54.7
1.5	2.8	4.0	5.2	6.4	2.4	4.5	6.4	8.3	9.8	4.0	9.1	13.0	17.2	21.1	24.5	27.5	30.5
0.67	1.28	1.82	2.26	2.93	1.11	2.16	3.06	3.85	4.46	1.95	4.19	5.90	7.73	9.20	10.6	11.1	11.5
27.80	8.55	4.55	2.96	2.17	12.00	3.60	2.10	1.35	0.98	6.15	1.54	0.83	0.50	0.39	0.30	0.26	0.17
108.00	40.50	25.70	21.90	17.36	83.00	35.90	18.70	13.60	10.70	52.90	23.55	15.00	8.81	8.68	7.16	6.89	4.63
3.0	5.5	8.1	10.4	12.6	4.9	9.0	12.2	15.8	18.0	8.7	19.2	25.0	33.0	34.0	35.0	36.0	36.8
2.2	4.2	5.9	7.8	9.6	3.6	6.8	9.6	12.4	14.7	6.0	13.7	19.4	25.7	31.6	36.7	41.3	45.8
0.94	1.73	2.54	3.27	3.96	1.54	2.83	3.83	4.96	5.65	2.73	6.03	7.85	10.4	10.7	11.0	11.3	11.6
12.60	3.86	2.02	1.40	1.08	5.30	2.06	0.97	0.61	0.42	2.73	0.70	0.41	0.22	0.17	0.11	0.15	0.09
49.30	21.57	13.27	8.60	10.96	37.00	19.10	12.60	6.10	7.21	23.50	10.47	7.35	4.89	3.86	3.60	3.06	2.46
2.5	4.7	6.3	7.5	8.7	3.6	7.0	8.9	10.7	12.2	7.0	17.5	21.5	29.0	N/A	N/A	N/A	N/A
3.0	5.5	7.9	10.4	12.8	4.8	9.0	12.8	16.5	19.5	8.0	18.2	25.9	32.3				
1.05	1.97	2.64	3.14	3.64	1.51	2.93	3.73	4.48	5.11	2.90	7.30	9.01	12.10				
6.42	2.14	1.16	0.73	0.57	3.00	1.00	0.53	0.35	0.25	1.35	0.38	0.21	0.11				
26.73	10.20	6.60	4.70	3.90	21.00	7.50	5.67	3.60	3.25	13.21	6.05	3.75	2.40				
2.2	4.0	C/D	C/D	N/A	2.9	4.5	C/D	C/D	N/A								
4.4	8.3				7.2	13.5											
1.38	2.51				1.82	2.83											
3.10	0.97				1.33	0.46											
12.30	4.81				9.23	3.44											

3 Phase VPWM drives 380-480Vrms

$\Delta \mathrm{t}=100^{\circ} \mathrm{C}$ winding $40^{\circ} \mathrm{C}$ maximum ambient All data subject to $+/-10 \%$ tolerance

Motor frame size (mm)		250 U 2		
	Frame length	D	E	F
	us stall torque (Nm)	92	116	136
Standard (2) pea	selection max (Nm)	276.0	348.0	408.0
High (P) pea	selection max (Nm)	N/A	N/A	N/A
	dard inertia (kgcm²)	275	337	400
	High inertia (kgcm²)	408	502	597
	ermal time const. (s)	439	486	608
Standard	eight unbraked (kg)	57.5	65.5	73.7
Standa	weight braked (kg)	68.5	76.5	84.5
Speed 1000 (rpm)	$\begin{array}{r} \mathrm{Kt}(\mathrm{Nm} / \mathrm{A})= \\ \mathrm{Ke}(\mathrm{~V} / \mathrm{krpm})= \end{array}$	$\begin{aligned} \mathrm{Kt}(\mathrm{Nm} / \mathrm{A}) & =5.4 \\ \mathrm{Ke}(\mathrm{~V} / \mathrm{krpm}) & =323 \end{aligned}$		
	Rated speed (rpm)	1000	1000	1000
	Rated torque (Nm)	75	92	106
	Stall current (A)	17.2	21.7	25.4
	Rated power (kW)	7.9	9.6	11.1
	R (ph-ph) (Ω)	0.61	0.48	0.34
	L (ph-ph) (mH)	22.9	19.1	14.9
Speed 1500 (rpm)	$\begin{array}{r} \mathrm{Kt}(\mathrm{Nm} / \mathrm{A})= \\ \mathrm{Ke}(\mathrm{~V} / \mathrm{krpm})= \end{array}$	$\begin{aligned} \mathrm{Kt}(\mathrm{Nm} / \mathrm{A}) & =3.6 \\ \mathrm{Ke}(\mathrm{~V} / \mathrm{krpm}) & =216 \end{aligned}$		
	Rated speed (rpm)	1500	1500	1500
	Rated torque (Nm)	67	76	84
	Stall current (A)	25.8	32.5	38.1
	Rated power (kW)	10.5	11.9	13.2
	R (ph-ph) (Ω)	0.27	0.21	0.15
	$\mathrm{L}(\mathrm{ph}-\mathrm{ph})(\mathrm{mH})$	10	8.6	6.6
Speed 2000 (rpm)	$\begin{array}{r} \mathrm{Kt}(\mathrm{Nm} / \mathrm{A})= \\ \operatorname{Ke}(\mathrm{V} / \mathrm{krpm})= \end{array}$	$\begin{aligned} \mathrm{Kt}(\mathrm{Nm} / \mathrm{A}) & =2.7 \\ \mathrm{Ke}(\mathrm{~V} / \mathrm{krpm}) & =162 \end{aligned}$		
	Rated speed (rpm)	1500	1500	1500
	Rated torque (Nm)	65	73	81
	Stall current (A)	34.4	43.4	50.9
	Rated power (kW)	10.2	11.5	12.7
	R (ph-ph) (Ω)	0.15	0.1	0.08
	$\mathrm{L}(\mathrm{ph}-\mathrm{ph})(\mathrm{mH})$	5.7	4.2	3.7
Speed 2500 (rpm)	$\begin{array}{r} \mathrm{Kt}(\mathrm{Nm} / \mathrm{A})= \\ \operatorname{Ke}(\mathrm{V} / \mathrm{krpm})= \end{array}$	$\begin{aligned} \mathrm{Kt}(\mathrm{Nm} / \mathrm{A}) & =2.1 \\ \mathrm{Ke}(\mathrm{~V} / \mathrm{krpm}) & =129 \end{aligned}$		
	Rated speed (rpm)	1500	1500	1500
	Rated torque (Nm)	62	70	77
	Stall current (A)	43.0	54.2	63.6
	Rated power (kW)	9.7	11	12.1
	R (ph-ph) (Ω)	0.09	0.08	0.06
	$\mathrm{L}(\mathrm{ph}-\mathrm{ph})(\mathrm{mH})$	3.5	3.1	2.6

For the 250 motor frame size, resolver feedback is standard.
The Unimotor fm 250 servo motor has been designed to give greatest motor efficiency up to a rated, or rms, speed of 1500 rpm. The range does include the optional speeds of 2000 rpm and 2500 rpm . These windings will allow the end user to enter the intermittent speed zone as well as the intermittent torque zone on the 250 motor.

These higher speed windings are designed with optimum kt values that allow increased speed without demanding very high currents

The Unimotor fm 250 is designed for S 2 to S 6 duties and as such the rms values play an important part in the motor selection for torque and speed.

C/D Consult Drive Centre/Distributor

N/A Not available

The information contained in this specification is for guidance only and does not form part of any contract

Stall torque, rated torque and power relate to maximum continuous operation tested in a $20^{\circ} \mathrm{C}$ ambient at 12 kHz drive switching frequency

Control Techniques have an ongoing process of development and reserve the right to change the specification without notice

All other figures relate to a $20^{\circ} \mathrm{C}$ motor temperature.
Maximum intermittent winding temperature is $140^{\circ} \mathrm{C}$

1.4 Peak torque information

Unimotor fm has two levels of peak torque available within the range, standard peak torque (code 2) and the high peak torque range (code P).

On some of the frame sizes the full peak torque can not be achieved at the full 100% rms current level. As shown below the 055 and 075 motors are not affected by the reduced levels and remains constant up to 100% rms current, whereas the 075-250 motors all show a drop at some point along the \% rms current line.

The graph below shows the standard peak factor for each frame size.
Standard (2) peak torque

To use this graph correctly the rms current and rms speed of the application have to be calculated. The rms current value must then be converted into a percentage of the full motor current available, at that rms speed value. If the full current available is 10 Amps and the rms current is 7.5 Amps , then the percentage rms current value is 75%. This value can then be plotted onto the graph in order to obtain the peak factor. The peak factor is then used as part of the calculation, shown below, for the peak torque value.

Peak factor x Stall current \mathbf{x} kt $=$ Peak torque
An example would be with a 142U2E300 motor where the \% rms current value is calculated to 50%, the peak factor would be 3. (Point A)

| Peak factor | x Stall current | x | kt $=$ Peak torque |
| :--- | :--- | :--- | :--- | :--- |
| 3.00 | x 14.7 | x $1.6=70.2 N m$ | |

But if the \% rms current value were to be calculated at a level of 100%, the peak factor would equal 1.00. (Point B)

| Peak factor | x Stall current | x $\quad k t=$ Peak torque |
| :--- | :--- | :--- | :--- |
| 1.00 | x 14.7 | x $1.6=23.4 N m$ |

Peak torque is defined for a maximum period of 250 ms , rms 3000 rpm $\Delta \max =100^{\circ} \mathrm{C}, 40^{\circ} \mathrm{C}$ ambient.

Unimotor fm	Peak factor 0\% to 100\% rms	
055	3.8	
075	3.0	
095	Peak factor 0\% to 88\% rms	Peak factor @ 100\% rms
	3.0	2.0
115	Peak factor 0\% to 86\% rms	Peak factor @ 100\% rms
	3.0	1.5
142	Peak factor 0\% to 57\% rms	Peak factor @ 100\% rms
	3.0	1.0
190	Peak factor 0 \% to $60 \% \mathrm{rms}$	Peak factor @ 100\% rms
	3.0	2.0
250	Peak factor 0\% to 80\% rms	Peak factor @ 100\% rms
	3.0	2.5

High (P) peak torque

As shown above the 075 increases to 5 times, 095 increases to 4.5 times, the 115 increases to 4 times across the \% rms current line and the 142 shows an increase to 4 times up until 57% dropping to 2.5 times at 100%.

Unimotor fm	Peak factor 0\% to 100\% rms	
075	5.0	
095	4.5	
115	4.0	
142	Peak factor 0\% to 57\% rms	Peak factor @ 100\% rms
	4	2.5
ak factor	tall current x kt	Peak torque

An example would be with a 142U2E300 motor where the \% rms current value is calculated to 50%, the peak factor would now be 4. (Point A)
Peak factor x Stall current $\mathrm{x} \quad \mathrm{kt}=$ Peak torque
$4.00 \mathrm{x} 14.7 \quad \mathrm{x} 1.6=93.6 \mathrm{Nm}$
But if the \% rms current value were to be calculated at a level of 100%, the peak factor would equal 2.5. (Point B)

Peak factor x Stall current $\mathrm{xkt}=$ Peak torque

| Peak factor | x Stall current | x | kt $=$ Peak torque |
| :--- | :--- | :--- | :--- | :--- |
| 2.50 | x 14.7 | x $1.6=58.8 N m$ | |

1.5 Dimensions

1.5.1 Frame size 055

NOTE: Output key dimensions (E,F,G and H) are applicable to keyed units only.

Standard motor dimension (mm) Note all dimensions shown are at nominal

	Unbraked length		Braked length		Flange thickness	Register length	Register diameter	Overall height	Flange square	Fixing hole diameter	Fixing hold PCD	Motor housing	Mounting bolts
	A	B	A	B	K	L	M (j 6)	N	P	R (H14)	S	T	
055A	118.0	90.0	158.0	130.0									
055B	142.0	114.0	182.0	154.0	7.0	2.5	40.0	99.0	55.0	5.8	63.0	55.0	M5
055C	166.0	138.0	206.0	178.0									

Vertical connectors dimension (mm)
Note all dimensions shown are at nominal

	Unbraked length	Braked length		Power connector	Signal connector
	B1	B2	B1	B2	N
055A	75.0	83.0	115.0	123.0	104.0
055B	99.0	107.0	139.0	147.0	104.0
055C	123.0	131.0	163.0	173.0	104.0

Optional connector height (mm)

C type	96.00
V type	105.0

Output shaft dimensions (mm)

	Shaft diameter	Shaft length	Key height	Key length	Key to shaft end	Key width hole thread size	Tapped hole depth	
9.0 Opt	C (j6)	D	E	F	G	H (h9)	I	J
11.0 A-C Std	11.0	20.0	10.2	15.0	1.0	3.0	M4	10.0
14.0 Max	14.0	23.0	12.5	15.0	1.5	4.0	M4	10.0

NOTE: Shaft options below the standard (Std) dimensions will require customer approval and may not be covered by warranty.

Optional flange dimensions (mm)

PCD code	Front end frame type	Flange thickness	Register length	Fixing hole diameter	Flange square	Fixing hole diameter	Fixing hold PCD	Mounting bolts
		K	L	M (j6)	P	R (H14)	S	
070	Flat	6	3	50	60	5.5	70	M5

NOTE: 3D drawings of the Unimotor fm and Unimotor hd motors can be downloaded from: http://motors.controltechniques.com/

1.5.2 Frame size 075

NOTE: Output key dimensions (E,F,G and \mathbf{H}) are applicable to keyed units only.

Standard motor dimension (mm) Note all dimensions shown are at nominal

	Unbraked length		Braked length		Flange thickness	Register length	Register diameter	Overall height	Flange square	Fixing hole diameter	Fixing hole PCD	Motor housing	Mounting bolts
	A (± 0.9)	$B(\pm 1.0)$	$A(\pm 0.9)$	$B(\pm 1.0)$	K (± 0.5)	$\mathrm{L}(\pm 0.1)$	M (j 6)	$N(\pm 1.0)$	$\mathrm{P}(\pm 0.1)$	R (H14)	$S(\pm 0.4)$	T (± 0.45)	
075A	208.2	157.2	253.2	202.2									
075B	238.2	187.2	283.2	232.2									
075C	268.2	217.2	313.2	262.2									
075D	298.2	247.2	343.2	292.2									

Optional flat flange motor

dimensions (mm)

	Unbraked length		Braked length	
	$\mathrm{A}(\pm 0.9)$	$\mathrm{B}(\pm 1.0)$	$\mathrm{A}(\pm 0.9)$	$\mathrm{B}(\pm 1.0)$
075A	192.6	141.6	237.6	186.6
075B	222.6	171.6	267.6	216.6
075C	252.6	201.6	297.6	246.6
075D	282.6	231.6	327.6	276.6

Optional connector height (mm)

Connection type	Overall height
	$\mathrm{N}(\pm 1.0)$
B	118.5
C	126.0

Optional flange dimensions (mm)

PCD code	Front end frame type	Flange square	Fixing hole PCD	Register diameter	Fixing hole diameter
075	Extended	$70.1)$	$\mathbf{S}(\pm \mathbf{0 . 4})$	$\mathbf{M}(\mathbf{j 6)}$	$\mathbf{R (H 1 4)}$
080	Extended	70.0	$66.7-75.0$	60.0	5.80
085	Flat	80.0	$75.0-80.0$	60.0	5.80

Output shaft dimensions (mm)

	Shaft diameter	Shaft length	Key height	Key length	Key to shaft end	Key width	Tapped hole thread size	Tapped hole depth
	C (j6)	D ($\pm 0.45)$	E (To IEC 72-1)	$F(\pm 0.25)$	$\mathrm{G}(\pm 1.1)$	H (h9)	1	$\mathrm{J}(\pm 1.0)$
11.0 A Std	11.0	23.0	12.5	14.0	3.6	4.0	M 4×0.4	11.0
14.0 B-D Std	14.0	30.0	16.0	22.0	3.6	5.0	M5 x 0.8	13.5
19.0 Max	19.0	40.0	21.5	32.0	3.6	6.0	M6x 1.0	17.0

EMERSON

Industrial Automation

1.5.3 Frame size 095

Standard motor dimension (mm) Note all dimensions shown are at nominal

	Unbraked length		Braked length		Flange thickness	Register length	Register diameter	Overall height	Flange square	Fixing hole diameter	Fixing hole PCD	Motor housing	Mounting bolts
	A (± 0.9)	$B(\pm 1.0)$	$A(\pm 0.9)$	$B(\pm 1.0)$	K (± 0.5)	$\mathrm{L}(\pm 0.1)$	M (j 6)	$N(\pm 1.0)$	$\mathrm{P}(\pm 0.1)$	R (H14)	$S(\pm 0.4)$	$T(\pm 0.6)$	
095A	226.9	175.9	271.9	220.9									
095B	256.9	205.9	301.9	250.9									
095C	286.9	235.9	331.9	280.9	5.9	2.80	80.0	131.5	90.0	7.0	100.0	95.0	M6
095D	316.9	265.9	361.9	310.9									
095E	346.9	295.9	391.9	340.9									

Optional flat flange motor

 dimensions (mm)| | Unbraked
 length | | Braked
 length | |
| :---: | :---: | :---: | :---: | :---: |
| | $\mathrm{A}(\pm 0.9)$ | $\mathrm{B}(\pm 1.0)$ | $\mathrm{A}(\pm 0.9)$ | $\mathrm{B}(\pm 1.0)$ |
| 095A | 201.8 | 150.8 | 246.8 | 195.8 |
| 095B | 231.8 | 180.8 | 276.8 | 225.8 |
| 095C | 261.8 | 210.8 | 306.8 | 255.8 |
| 095D | 291.8 | 240.8 | 336.8 | 285.8 |
| 095E | 321.8 | 270.8 | 366.8 | 315.8 |

Optional connector height (mm)

Connection type	Overall height
	$\mathrm{N}(\pm 1.0)$
B	131.5
C	139.0

Optional flange dimensions (mm)

PCD code	Front end frame type	Flange square	Fixing hole PCD	Register diameter	Flange thickness	Fixing hole diameter
$\mathbf{0 9 8}$	Extended	90.0	98.43	$\mathbf{P}(\mathbf{0 . 1)}$	$\mathbf{S}(\pm \mathbf{0 . 4})$	$\mathbf{M}(6)$
$\mathbf{1 1 5}$	Flat	105.0	115.0	$950.5)$	$\mathrm{R}(\mathrm{H} 14)$	

Output shaft dimensions (mm)

	Shaft diameter	Shaft length	Key height	Key length	Key to shaft end	Key width	Tapped hole thread size	Tapped hole depth
	$\mathrm{C}(\mathrm{j} 6)$	$\mathrm{D}(\pm \mathbf{0 . 4 5)}$	$\mathrm{E}($ To IEC $72-1)$	$\mathrm{F}(\pm 0.25)$	$\mathrm{G}(\pm 1.1)$	$\mathrm{H}(\mathrm{h} 9)$	I	$\mathrm{J}(\pm 1.0)$
14.0 A Std	14.0	30.0	16.0	22.0	3.6	5.0	$\mathrm{M} 5 \times 0.8$	13.5
19.0 B-E Std	19.0	40.0	21.5	32.0	3.6	6.0	$\mathrm{M} 6 \times 1.0$	17.0
22.0 Max	22.0	50.0	24.5	40.0	4.6	6.0	$\mathrm{M} 8 \times 1.25$	20.0

NOTE: Shaft options below the standard (Std) dimensions will require customer approval and may not be covered by warranty.

Frame size 115

Standard motor dimension (mm) Note all dimensions shown are at nominal

	Unbraked length		Braked length		Flange thickness	Register length	Register diameter	Overall height	Flange square	Fixing hole diameter	Fixing hole PCD	Motor housing	Mounting bolts
	A $\pm 0.9)$	$B(\pm 1.0)$	$A(\pm 0.9)$	$B(\pm 1.0)$	$K(\pm 0.5)$	$L(\pm 0.1)$	M (j6)	$N(\pm 1.0)$	$P(\pm 0.2)$	R (H14)	$S(\pm 0.4)$	$\mathrm{T}(\pm 0.6)$	
115A	245.2	202.	290.2	247.0									
115B	275.2	232.0	320.2	277.0									
115C	305.2	262.0	350.2	307.0	9.6	2.80	95.0	149.0	105.0	10.0	115.0	115.0	M8
115D	335.2	292.0	380.2	337.0									
115E	365.2	322.0	410.2	367.0									

Optional flat flange motor

dimensions (mm)

	Unbraked length		Braked length	
	A ($\pm 0.9)$	$B(\pm 1.0)$	A ($\pm 0.9)$	$B(\pm 1.0)$
115A	214.4	171.2	259.4	216.2
115B	244.4	201.2	289.4	246.2
115C	274.4	231.2	319.4	276.2
115D	304.4	261.2	349.4	306.2
115E	334.4	291.2	379.4	336.2
Optional connector height (mm)				
Connection type			Overall height	
			N ($\pm 1.0)$	
A			149.0	
B			156.5	
C			156.5	

Optional flange dimensions (mm)

PCD code	Front end frame type	Flange square	Fixing hole PCD	Register diameter	Fixing hole diameter
$\mathbf{1 3 0}$	Flat	130.0	$\mathbf{S}(\pm 0.4)$	$\mathbf{M}(\mathrm{j} 6)$	$\mathbf{R (H 1 4)}$

Output shaft dimensions(mm)

	Shaft diameter	Shaft length	Key height	Key length	Key to shaft end	Key width	Tapped hole thread size	Tapped hole depth
	$\mathrm{C}(\mathbf{j} 6)$	$\mathrm{D}(\pm \mathbf{0 . 4 5)}$	$\mathrm{E}($ To IEC 72-1)	$\mathrm{F}(\pm 0.25)$	$\mathrm{G}(\pm 1.1)$	$\mathrm{H}(\mathrm{h} 9)$	I	$\mathrm{J}(\pm 0.4)$
19.0 A-C Std	19.0	40.0	21.5	32.0	3.6	6.0	$\mathrm{M} 6 \times 1.0$	17.0
22.0 Opt	22.0	50.0	24.5	40.0	4.6	6.0	$\mathrm{M} 8 \times 1.25$	20.0
24.0 D-E Std	24.0	50.0	27.0	40.0	4.6	8.0	$\mathrm{M} 8 \times 1.25$	20.0
28.0 Opt	28.0	60.0	31.0	50.0	4.6	8.0	$\mathrm{M} 10 \times 1.5$	23.0
32.0 Max	$32.0(\mathrm{~K} 6)$	80.0	35.0	70.0	4.6	10.0	$\mathrm{M} 12 \times 1.75$	29.0

NOTE: Shaft options below the standard (Std) dimensions will require customer approval and may not be covered by warranty.

1.5.5 Frame size 142

Standard motor dimension (mm) Note all dimensions shown are at nominal

	Unbraked length		Braked length		Flange thickness	Register length	Register diameter	Overall height vertical	Flange square	Fixing hole diameter	Fixing hole PCD	Motor housing	Mounting bolts
	A $\pm \pm 0.9$)	$B(\pm 1.0)$	$A(\pm 0.9)$	$B(\pm 1.0)$	$K(\pm 0.5)$	$L(\pm 0.1)$	M (j 6)	$N(\pm 1.0)$	$P(\pm 0.2)$	R (H14)	$S(\pm 0.4)$	$\mathrm{T}(\pm 0.7)$	
142A	226.2	183.0	271.2	228.0									
142B	256.2	213.0	301.2	258.0									
142C	286.2	243.0	331.2	288.0	11.6	3.4	130.0	176.0	142.0	12.0	165.0	142.0	M10
142D	316.2	273.0	361.2	318.0									
142E	346.2	303.0	391.2	348.0									

Optional motor flange

 dimensions (mm)| | Unbraked
 length | | Braked
 length | |
| :--- | :---: | :---: | :---: | :---: |
| | $\mathrm{A}(\pm 0.9)$ | $\mathrm{B}(\pm 1.0)$ | $\mathrm{A}(\pm 0.9)$ | $\mathrm{B}(\pm 1.0)$ |

Connection type	Overall height
	$\mathrm{N}(\pm 1.0)$
B	176.0
C	183.5

Optional flange dimensions (mm)

PCD code	Front end frame type	Flange square	Fixing hole PCD	Register diameter	Flange thickness	Fixing hole diameter
$\mathbf{1 4 9}$	Extended	$\mathbf{P}(\pm 0.2)$	$\mathrm{S}(\pm 0.1)$	$\mathrm{M}(\mathrm{j} 6)$	$\mathrm{K}(\pm 0.5)$	$\mathrm{R}(\mathrm{H} 14)$

Output shaft dimensions (mm)

	Shaft diameter	Shaft length	Key height	Key length	Key to shaft end	Key width	Tapped hole thread size	Tapped hole depth
C (j6)	$\mathrm{D}(\pm 0.45)$	$\mathrm{E}($ To IEC 72-1)	$\mathrm{F}(\pm 0.25)$	$\mathrm{G}(\pm 1.1)$	$\mathrm{H}(\mathrm{h} 9)$	I	$\mathrm{J}(\pm 1.0)$	
22.0 Opt	22.0	50.0	24.5	40.0	4.6	6.0	$\mathrm{M} 8 \times 1.25$	20.0
24.0 A-E Std	24.0	50.0	27.0	40.0	4.6	8.0	$\mathrm{M} 8 \times 1.25$	20.0
28.0 Opt	28.0	60.0	31.0	50.0	4.6	8.0	$\mathrm{M} 10 \times 1.5$	23.0
32.0 Max	$32.0(\mathrm{~K} 6)$	80.0	35.0	70.0	4.6	10.0	$\mathrm{M} 12 \times 1.75$	29.0

NOTE: Shaft options below the standard (Std) dimensions will require customer approval and may not be covered by warranty.

1.5.6 Frame size 190

Standard motor dimension (mm) Note all dimensions shown are at nominal

	Unbraked length		Braked length		Flange thickness	Register length	Register diameter	Overall height	Flange square	Fixing hole diameter	Fixing hole PCD	Motor housing	Mounting bolts
	A $\pm 0.9)$	$B(\pm 1.0)$	A ($\pm 0.9)$	$B(\pm 1.0)$	$\mathrm{K}(\pm 0.5)$	$L(\pm 0.1)$	M ($\mathrm{j}^{\text {) }}$	$N(\pm 1.0)$	$\mathrm{P}(\pm 0.2)$	R (H14)	$S(\pm 0.4)$	$\mathrm{T}(\pm 1.5)$	
190A	237.4	198.2	318.2	279.0									
190B	264.3	225.1	345.2	306.0									
190C	291.3	252.1	372.1	332.9									
190D	318.2	279.0	399.1	359.9	15	3.90	180.	232.0	190.0	14.5	215.0	190.0	M12
190E	345.2	306.0	426.0	386.8									
190F	372.1	332.9	453.0	413.8									
190G	399.1	359.9	479.9	440.7									
190H	426.0	386.8	506.9	467.7									

Optional connector height (mm)

Connection type	Overall height
	$\mathrm{N}(\pm 1.0)$

A	245.0
B	252.5
C	252.5

Output shaft dimensions (mm)

	Shaft diameter	Shaft length	Key height	Key length	Key to shaft end	Key width	Tapped hole thread size	Tapped hole depth
	$\mathrm{C}(\mathrm{j} 6)$	$\mathrm{D}(\pm \mathbf{0 . 4 5)}$	$\mathrm{E}($ To IEC 72-1)	$\mathrm{F}(\pm 0.25)$	$\mathrm{G}(\pm 1.1)$	$\mathrm{H}(\mathrm{h} 9)$	$\mathrm{I})$	$\mathrm{J}(\pm 1.0)$
28.0 Opt	28.0	60.0	31.0	50.0	4.6	8.0	$\mathrm{M} 10 \times 1.5$	23.0
32.0 A-H Std	$32.0(\mathrm{k} 6)$	80.0	35.0	70.0	4.6	10.0	$\mathrm{M} 12 \times 1.75$	29.0
38.0 Opt	$38.0(\mathrm{k} 6)$	80.0	41.0	70.0	4.6	10.0	$\mathrm{M} 12 \times 1.75$	29.0
42.0 Max	$42.0(\mathrm{k} 6)$	110.0	45.0	100.0	4.6	12.0	$\mathrm{M} 16 \times 2.0$	37.0

NOTE: Shaft options below the standard (Std) dimensions will require customer approval and may not be covered by warranty.

1.5.7 Frame size 250

NOTE: Output key dimensions (E,F,G and H) are applicable to keyed units only.

Standard motor dimension (mm) Note all dimensions shown are at nominal

	Motor Length			Flange thickness	Register length	Register diameter	Overall height	Flange square	Fixing hole diameter	Fixing hole PCD	Motor housing	Hybrid box width	Signal connector height	Mounting bolts
	A (± 1.3)	A1 (± 2.0)	B1 ($\pm 1.3)$	$K(\pm 0.5)$	$L(\pm 0.1)$	M (j 6)	$N(\pm 1.0)$	$\mathrm{P}(\pm 0.6)$	R (H14)	$S(\pm 0.4)$	$T(\pm 1.0)$	$\mathrm{U}(\pm 0.4)$	$\mathrm{V}(\pm 1.0)$	
	Unbraked motor			20.0	4.50	250.0	362.8	256.0	18.5	300.0	249.5	186.0	228.5	M16
250D	370.7	406.1	179.7											
250E	400.7	436.1	209.7											
250F	430.7	466.1	239.7											
	Braked motor													
250D	442.5	477.9	251.5											
250E	472.5	507.9	281.5											
250F	502.5	537.9	311.5											

Output shaft dimensions (mm)

	Shaft diameter	Shaft length	Key height	Key length	Key to shaft end	Key width	Tapped hole thread size	Tapped hole depth
	C (k6)	D (± 0.45)	E (To IEC 72-1)	$\mathrm{F}(\pm 0.25)$	$\mathrm{G}(\pm 1.1)$	H (h9)	I	$\mathrm{J} \pm 1.0$)
38.0 Opt	38.0	80.0	41.0	70.0	4.6	10.0	M12 1.75	29.0
42.0 Opt	42.0	110.0	45.0	100.0	6.0	12.0	M16 $\times 2.0$	37.0
48.0 D-F Std	48.0	110.0	51.5	100.0	6.0	14.0	M16 $\times 2.0$	37.0

Optional connector height (mm)

Connection type	Power overall height	Signal overall height
	$\mathbf{N}(\pm 1.0)$	$\mathrm{V}(\pm 1.0)$
V	291.5	221.0

NOTE: Shaft options below the standard (Std) dimensions will require customer approval and may not be covered by warranty.

NOTE: 3D drawings of the Unimotor fm and Unimotor hd motors can be downloaded from: http://motors.controltechniques.com/

2 Introduction to Unimotor fm fan blown motors

2.1 Overview

Based on Unimotor fm mechanics with modified electromagnetic construction, the fan blown version has been designed to give greater performance across the torque range. For example, the 190 fan blown variant increases the stall torque from 50.6 Nm to 68 Nm when compared to the standard Unimotor fm motor. This extra torque allows for increased application performance with higher rms values achievable.

The motors available have been selected to give the best torque increases across the available frame sizes.

To allow for the higher currents required, the 142 fan blown range is only available with the size 1.5 (53A rated) power connector.

2.2 Quick reference table

2.3 Peak torque information

With the Unimotor fm fan blown range, the stall and rated torque increase while there is no increase in the peak torque value. This means that the peak factors for fan blown motors are different to standard self cooled motors and these new values are shown in the table right.

Unimotor fm	Peak factor @ $0-100 \%$ rms	
075	Peak factor @ 0 to 88% rms	Peak factor @ 100% rms
095	2.35	1.57
115	Peak factor @ 0 to 86% rms	Peak factor @ 100\% rms
	2.28	1.14
142	Peak factor @ 0-57\% rms	Peak factor @ 100\% rms
	2.38	1.00
190	Peak factor @ 0-60\% rms	Peak factor @ 100\% rms
	2.20	1.47

Unimotor fm fan blown motor peak torque graph

Peak torque is defined for a maximum period of 250 ms , rms $3000 \mathrm{rpm}, \Delta \mathrm{max}=100^{\circ} \mathrm{C}, 40^{\circ} \mathrm{C}$ ambient
To use this graph correctly the rms current and rms speed of the application have to be calculated. The rms current value must then be converted into a percentage of the full motor current available, at the rms speed value. If the full current available is 10 A and the rms current is 7.5 A , then the percentage rms current value is 75%. This value can then be plotted onto the graph in order to obtain the peak factor. The peak factor is then used as part of the calculation, shown below, for the peak torque value.

Peak factor x Stall current \mathbf{x} kt $=$ Peak torque

2.4 IP Ratings

Motor

IP65S - No ingress of dust; no contact with or approach to live or moving parts inside the enclosure. Water projected by a nozzle against enclosure from any direction shall have no harmful effects. (Excluding the front shaft seal.)
($\mathrm{S}=$ device standing still during water test)

An example would be with a 142 U4E300 motor, where the $\%$ rms current value is calculated to 50%, the peak factor would be 2.38 .
(Point A)

Peak factor	x Stall current	x	kt	$=$ Peak torque
2.38	x 18.4	x	$1.6=70.2 N m$	

But if the \% rms current value were to be calculated at a level of 100%, the peak factor would equal 1.00. (Point B)

| Peak factor | x Stall current | x $\quad k t=$ Peak torque |
| :--- | :--- | :--- | :--- |
| 1.00 | x 18.4 | x $1.6=29.5 N m$ |

2.5 Ordering information

Use the information below in the illustration to create an order code for a Unimotor $\mathfrak{i l i p}$
The details in the band are an example of an order reference (Std = Standard selection, Opt = Optional selection)

095	U	4	D	60	0	V
Frame size	Motor voltage	Peak torque selection	Stator length	Winding speed	Brake	Connection type*
	075-190 frame	075-190 frame	075 frame	075 frame	075-190 frame	075-190 frame
075	$\mathrm{U}=400 \mathrm{~V}$	4 =Peak torque	D	$60=6000 \mathrm{rpm}$	$0=$ Not fitted (Std)	$A=$ Power and Signal 90° fixed
095			095 frame	095 frame	1 = Parking brake	B = Power and Signal
115			D	$60=6000 \mathrm{rpm}$	fitted 24 Vdc	ota
142			115 frame	115 frame	$5=\text { High energy }$	$\mathrm{C}=$ Power 90° rotatable
190			D	$40=4000 \mathrm{rpm}$	parking brake	Signal vertical
			E	142 frame	$X=$ Special	$\mathrm{V}=$ Power and Signal
			142 frame	$30=3000 \mathrm{rpm}$		tic
			C	190 frame		$X=$ Special
			E	$C \& E: 30=3000 \mathrm{rpm}$		
			190 frame	$\mathrm{F}: 20=2000 \mathrm{rpm}$		
			C			
			E			
			F			

[^0]| A | MA | | A | 100 | | 220 | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Output shaft | Feedback device | | Inertia | PCD | | Shaft diameter | |
| 075-190 frame | 075-142 frame | | 075-190 frame | 075 frame | | | |
| A = Keyed | AE $=$ Resolver | | A = Standard | 075 | Std | 19.0 | D Std |
| B = Plain shaft | CA = Incremental Encoder | 4096 ppr | $B=$ High | 095 frame | | | |
| $X=$ Special | MA = Incremental Encoder | 2048 ppr | | 100 | Std | 22.0 | D Std |
| | K = Incremental Encoder | 1024 ppr | | 115 frame | | | |
| | $E B=$ Optical Absolute Multi-turn | EQN 1325 | | 115 | Std | 24.0 | D Std |
| | EC = Inductive Absolute Multi-turn | EQI 1331 | | | | 28.0 | E Std |
| | FB $=$ Optical Absolute Single turn | ECN 1313 | | 142 frame | | | |
| | $\mathrm{FC}=$ Inductive Absolute Single turn | ECI 1319 | | 165 | Std | 28.0 | C/E Std |
| | RA = Optical SinCos Multi-turn | SRM 50 | | 190 frame | | | |
| | SA = Optical SinCos Single turn | SRS 50 | | 215 | Std | 32.0 | C Std |
| | XX = Special | | | | | 38.0 | E/F Std |
| | 190 frame only | | | | | | |
| | AE $=$ Resolver | | | | | | |
| | CA = Incremental Encoder (Std) | 4096 ppr | | | | | |
| | MA = Incremental Encoder | 2048 ppr | | | | | |
| | EB = Optical Absolute Multi-turn | EQN 1325 | | | | | |
| | FB $=$ Optical Absolute Single turn | ECN 1313 | | | | | |
| | RA $=$ Optical SinCos Multi-turn | SRM 50 | | | | | |
| | SA = Optical SinCos Single turn | SRS 50 | | | | | |
| | XX = Special | | | | | | |

EMERSON

Industrial Automation

2.6 Dimensions

2.6.1 Frame size 075

$\Delta t=100^{\circ} \mathrm{C}$ winding $40^{\circ} \mathrm{C}$ maximum ambient All data subject to $+/-10 \%$ tolerance

Fan box performance

	Motor frame size (mm)	075 U4
	Voltage (Vrms)	380-480
		Force - air cooling
	Frame length	D
	Continuous stall torque (Nm)	5.2
	Peak torque (Nm)	11.7
	Standard inertia (kgcm^{2})	2.0
	High inertia (kgcm^{2})	2.4
	Winding thermal time const. (s)	100
Speed 6000 (rpm)	$\begin{array}{r} \mathrm{Kt}(\mathrm{Nm} / \mathrm{A})= \\ \mathrm{Ke}(\mathrm{~V} / \mathrm{krpm})= \end{array}$	$\begin{gathered} 0.80 \\ 49.00 \end{gathered}$
	Rated torque (Nm)	4.0
	Stall current (A)	6.5
	Rated power (kW)	2.51
	R (ph-ph) (Ω)	1.90
	L (ph-ph) (mH)	4.80

Stall torque, rated torque and power relate to maximum continuous operation tested in a $20^{\circ} \mathrm{C}$ ambient at 12 kHz drive switching frequency

All other figures relate to a $20^{\circ} \mathrm{C}$ motor temperature. Maximum intermittent winding temperature is $140^{\circ} \mathrm{C}$

Fan rating

Voltage	Free air flow	Fan curent rating
230 Vac	$50 \mathrm{~m}^{3} / \mathrm{h}$	0.05 A

Clearance behind fan box: 40 mm

Fan blown motor dimension (mm)

Drawing number: IM/0677/GA

	Unbraked length		Braked length		Flange thickness	Register length	Register diameter	Fan box overall height	Flange square	Fixing hole diameter	Fixing hole PCD	Fan box housing	Mounting bolts
	A (± 5.0)	B (± 1.0)	A (± 5.0)	B (± 1.0)	K (± 0.5)	$\mathrm{L}(\pm 0.1)$	M (j 6)	W (± 3.0)	$\mathrm{P}(\pm 0.1)$	R (H14)	$S(\pm 0.4)$	X (± 1.0)	
075D	397.4	247.2	442.4	292.2	5.8	2.40	60.0	121.6	70.0	5.8	75.0	91.6	M5

Connector height (mm)

Connection type	Overall height
A	$\mathbf{N 1 . 0})$
B	126.5
C	134.0
V	134.0

Shaft dimensions (mm)

	Shaft diameter	Shaft length	Key height	Key length	Key to shaft end	Key width	Tapped hole thread size	Tapped hole diameter
	$\mathrm{C}(\mathrm{j} 6)$	$\mathrm{D}(\pm 0.45)$	$\mathrm{E}(+0.009 /-0.134)$	$\mathrm{F}(\pm 0.25)$	$\mathrm{G}(\pm 1.1)$	$\mathrm{H}(\mathrm{h} 9)$	I	$\mathrm{J}(\pm 1.0)$
19.0 D Std	19.0	40.0	21.5	32.0	3.6	6.0	$\mathrm{M} 6 \times 1.0$	17.0

2.6.2 Frame size 095

$\Delta t=100^{\circ} \mathrm{C}$ winding $40^{\circ} \mathrm{C}$ maximum ambient All data subject to $+/-10 \%$ tolerance

Fan box performance

| Motor frame size (mm) | 095U4 |
| ---: | :---: | :---: |
| Voltage (Vrms) | $380-480$ |
| | Force - air
 cooling |
| Frame length | D |
| Continuous stall torque (Nm) | 9.0 |
| Peak torque (Nm) | 22.5 |
| Standard inertia (kgcm²) | 5.1 |
| High inertia (kgcm²) | 7.0 |
| Winding thermal time const. (s) | 221 |
| Kt (Nm/A) $=$ | 0.80 |
| Ke (V/krpm) $=$ | 49.00 |
| Rated torque (Nm) | 5.8 |
| Stall current (A) | 11.3 |
| Rated power (kW) | 8.3 |
| R (ph-ph) (Ω (rpm) | 0.62 |
| L (ph-ph) (mH) | 2.70 |

Stall torque, rated torque and power relate to maximum continuous operation tested in a $20^{\circ} \mathrm{C}$ ambient at 12 kHz drive switching frequency

All other figures relate to a $20^{\circ} \mathrm{C}$ motor temperature. Maximum intermittent winding temperature is $140^{\circ} \mathrm{C}$

Fan rating

Voltage	Free air flow	Fan curent rating
230 Vac	$67 \mathrm{~m}^{3} / \mathrm{h}$	0.05 A

Fan blown motor dimension (mm)

Drawing number: IM/0678/GA

	Unbraked length		Braked length		Flange thickness	Register length	Register diameter	Fan box overall height	Flange square	Fixing hole diameter	Fixing hole PCD	Fan box housing	Mounting bolts
	A (± 5.0)	B (± 1.0)	A (± 5.0)	$\mathrm{B}(\pm 1.0)$	K (± 0.5)	$\mathrm{L}(\pm 0.1)$	M (j6)	W (± 3.0)	$\mathrm{P}(\pm 0.1)$	R (H14)	$S(\pm 0.4)$	X (± 1.0)	
095D	386.6	265.9	431.6	310.9	5.9	2.80	80.0	141.6	90.0	7.0	100.0	111.6	M6

Connector height (mm)

Connection type	Overall height
A (± 1.0)	
B	139.5
C	147.0
V	147.0

Shaft dimensions (mm)

	Shaft diameter	Shaft length	Key height	Key length	Key to shaft end	Key width	Tapped hole thread size	Tapped hole diameter
	$\mathrm{C}(\mathrm{j} 6)$	$\mathrm{D}(\pm 0.45)$	$\mathrm{E}(+0.009 /-0.134)$	$\mathrm{F}(\pm 0.25)$	$\mathrm{G}(\pm 1.1)$	$\mathrm{H}(\mathrm{h} 9)$	I	$\mathrm{J}(\pm 1.0)$
2 22.0 D Std	22.0	50.0	24.5	40.0	4.6	6.0	$\mathrm{M} 8 \times 1.25$	20.0

EMERSON

Industrial Automation
2.6.3 Frame size 115

$\Delta t=100^{\circ} \mathrm{C}$ winding $40^{\circ} \mathrm{C}$ maximum ambient All data subject to $+/-10 \%$ tolerance

Fan box performance

	Motor frame size (mm)	115 U 4	
	Voltage (Vrms)	380-480	
		Force - air cooling	
	Frame length	D	E
	Continuous stall torque (Nm)	15.2	20.1
	Peak torque (Nm)	37.2	45.9
	Standard inertia (kgcm^{2})	11.4	13.8
	High inertia (kgcm^{2})	16.6	18.9
	inding thermal time const. (s)	217	241
Speed 4000 (rpm)) $\begin{array}{r}\mathrm{Kt}(\mathrm{Nm} / \mathrm{A})= \\ \mathrm{Ke}(\mathrm{V} / \mathrm{krpm})=\end{array}$	$\begin{gathered} 1.20 \\ 73.50 \end{gathered}$	
	Rated torque (Nm)	12.0	16.1
	Stall current (A)	12.7	16.8
	Rated power (kW)	5.03	6.74
	R (ph-ph) (Ω)	0.73	0.57
	$\mathrm{L}(\mathrm{ph}-\mathrm{ph})(\mathrm{mH})$	4.70	3.90

Stall torque, rated torque and power relate to maximum continuous operation tested in a $20^{\circ} \mathrm{C}$ ambient at 12 kHz drive switching frequency

All other figures relate to a $20^{\circ} \mathrm{C}$ motor temperature. Maximum intermittent winding temperature is $140^{\circ} \mathrm{C}$

Fan rating

Voltage	Free air flow	Fan curent rating
230 Vac	$160 \mathrm{~m}^{3} / \mathrm{h}$	0.08 A

Fan blown motor dimension (mm)
Drawing number: IM/0679/GA

	Unbraked length		Braked length		Flange thickness	Register length	Register diameter	Fan box overall height	Flange square	Fixing hole diameter	Fixing hole PCD	Fan box housing	Mounting bolts
	A (± 5.0)	B (± 1.0)	A (± 5.0)	B (± 1.0)	K (± 0.5)	$\mathrm{L}(\pm 0.1)$	M (j 6)	W (± 3.0)	$\mathrm{P}(\pm 0.1)$	R (H14)	$S(\pm 0.4)$	X (± 2.0)	
115D	403.0	292.0	448.0	337.0	9.6	80	95.0	161.6	105.0	10.0	115.0	131.6	M8
115E	433.0	322.0	478.0	367.0					105.0	10.0			

Connector height (mm)

Connection type	Overall height
A	$\mathbf{N 1 . 0})$
B	157.0
C	164.5
V	164.5

Shaft dimensions (mm)
2.6.4 Frame size 142

$\Delta t=100^{\circ} \mathrm{C}$ winding $40^{\circ} \mathrm{C}$ maximum ambient All data subject to $+/-10 \%$ tolerance

Fan box performance

Motor frame size (mm)	142 U 4	
Voltage (Vrms)	380-480	
	Force - air cooling	
Frame length	C	E
Continuous stall torque (Nm)	18.9	29.5
Peak torque (Nm)	45.9	70.2
Standard inertia (kgcm^{2})	22.2	35.4
High inertia (kgcm^{2})	36.5	49.7
Winding thermal time const. (s)	275	365
Speed 3000 (rpm) $\quad \begin{aligned} \mathrm{Kt}(\mathrm{Nm} / \mathrm{A})= \\ \mathrm{Ke}(\mathrm{V} / \mathrm{krpm})\end{aligned}=$	$\begin{gathered} 1.60 \\ 98.00 \end{gathered}$	
Rated torque (Nm)	16.1	25.0
Stall current (A)	11.8	18.4
Rated power (kW)	5.06	7.85
R (ph-ph) (Ω)	0.94	0.44
$\mathrm{L}(\mathrm{ph}-\mathrm{ph})(\mathrm{mH})$	8.30	5.77

Stall torque, rated torque and power relate to maximum continuous operation tested in a $20^{\circ} \mathrm{C}$ ambient at 12 kHz drive switching frequency

All other figures relate to a $20^{\circ} \mathrm{C}$ motor temperature. Maximum intermittent winding temperature is $140^{\circ} \mathrm{C}$

Fan rating

Voltage	Free air flow	Fan curent rating
230 Vac	$160 \mathrm{~m}^{3} / \mathrm{h}$	0.08 A

Fan blown motor dimension (mm)

Drawing number: IM/0680/GA

	Unbraked length		Braked length		Flange thickness	Register length	Register diameter	Fan box overall height	Flange square	Fixing hole diameter	Fixing hole PCD	Fan box housing	Mounting bolts
	A (± 5.0)	B (± 1.0)	A $\pm \pm 5.0)$	$B(\pm 1.0)$	K (± 0.5)	$L(\pm 0.1)$	M ($\mathrm{j}^{\text {) }}$	W (± 3.0)	$\mathrm{P}(\pm 0.1)$	R (H14)	$S(\pm 0.4)$	$\mathrm{X}(\pm 2.0)$	
142C	367.0	249.7	412.0	294.7	11.6	3.4	130.0	188.1	142.0	12.0	165.0	158.6	M10
142E	427.0	309.7	472.0	354.7									

Connector height (mm)

Connection type	Overall height
A	$\mathbf{N} 1.0)$
B	184.0
C	191.5
V	184.5

Shaft dimensions (mm)
28.0 C/E Std

Shaft diameter	Shaft length	Key height	Key length
$\mathrm{C}(\mathrm{j} 6)$	$\mathrm{D}(\pm 0.45)$	$\mathrm{E}(+0.009 /-0.294)$	$\mathrm{F}(\pm 0.25)$
28.0	60.0	31.0	50.0

Key to shaft end	Key width	Tapped hole thread size	Tapped hole diameter
$\mathrm{G}(\pm 1.1)$	$\mathrm{H}(\mathrm{h} 9)$	I	$\mathrm{J}(\pm 1.0)$
4.6	8.0	$\mathrm{M} 10 \times 1.5$	23.0

EMERSON

Industrial Automation

2.6.5 Frame size 190

$\Delta t=100^{\circ} \mathrm{C}$ winding $40^{\circ} \mathrm{C}$ maximum ambient All data subject to + - 10% tolerance

Fan box performance

Motor frame size (mm)	190 U 4		
Voltage (Vrms)	380-480		
	Force - air cooling		
Frame length	C	E	F
Continuous stall torque (Nm)	41.0	68.0	79.0
Peak torque (Nm)	93.3	151.6	176.2
Standard inertia (kgcm^{2})	67.5	105.0	123.1
High inertia (kgcm^{2})	112.7	150.2	168.3
Winding thermal time const. (s)	241	281	319
$\begin{array}{lr} \text { Speed } 2000(\mathrm{rpm}) & \left.\begin{array}{r} \mathrm{Kt}(\mathrm{Nm} / \mathrm{A}) \end{array}\right)= \\ \mathrm{Ke}(\mathrm{~V} / \mathrm{krDm})= \end{array}$			2.40
Rated torque (Nm)			66.5
Stall current (A)			32.9
Rated current (A)			27.7
Rated power (kW)			13.9
R (ph-ph) (Ω)			0.30
$\mathrm{L}(\mathrm{ph}-\mathrm{ph})(\mathrm{mH})$			7.16
$\begin{aligned} \text { Speed } 3000(\mathrm{rpm}) & \mathrm{Kt}(\mathrm{Nm} / \mathrm{A})= \\ \mathrm{Ke}(\mathrm{~V} / \mathrm{krpm}) & = \end{aligned}$	$\begin{gathered} 1.60 \\ 98.00 \end{gathered}$		
Rated torque (Nm)	35.5	55.0	
Stall current (A)	25.6	42.5	
Rated power (kW)	11.15	17.30	
R (ph-ph) (Ω)	0.41	0.17	
$\mathrm{L}(\mathrm{ph}-\mathrm{ph})(\mathrm{mH})$	7.35	3.86	

Stall torque, rated torque and power relate to maximum continuous operation tested in a $20^{\circ} \mathrm{C}$ ambient at 12 kHz drive switching frequency

All other figures relate to a $20^{\circ} \mathrm{C}$ motor temperature.
Maximum intermittent winding temperature is $140^{\circ} \mathrm{C}$
Fan rating

Voltage	Free air flow	Fan curent rating
230 Vac	$325 \mathrm{~m}^{3} / \mathrm{h}$	0.13 A

Clearance behind fan box: 60 mm

Fan blown motor dimension (mm)
Drawing number: IM/0681/GA

	Unbraked length		Braked length		Flange thickness	Register length	Register diameter	Fan box overall height	Flange square	Fixing hole diameter	Fixing hole PCD	Fan box housing	Mounting bolts
	A (± 5.0)	B ($\pm 1.0)$	A (± 5.0)	B (± 1.0)	K (± 0.5)	$\mathrm{L}(\pm 0.1)$	M (j6)	W (± 3.0)	$\mathrm{P}(\pm 0.1)$	R (H14)	$S(\pm 0.4)$	X (± 2.0)	
190C	377.8	252.1	458.6	332.9									
190E	431.7	306.0	512.5	386.8	15.0	3.90	180.0	236.6	190.0	14.5	215.0	206.6	M12
190F	458.6	332.9	539.5	413.8									

Connector height (mm)

Connection type	Overall height
	$\mathbf{N} \pm 1.0)$
B	253.0
C	260.5
V	260.5

Shaft dimensions (mm)

	Shaft diameter	Shaft length	Key height	Key length	Key to shaft end	Key width	Tapped hole thread size	Tapped hole diameter
	C (j6)	D (± 0.45)	$E(+0.018 /-0.288)$	$F(\pm 0.25)$	$G(\pm 1.1)$	H (h9)	I	$\mathrm{J}(\pm 1.0)$
32.0 C Std	32.0 (k6)	80.0	35.0	70.0	4.6	10.0	M12 1.75	29.0
38.0 E/F Std	38.0 (k6)	80.0	41.0	70.0	4.6	10.0	M12 1.75	29.0

EMERSON

3 Introduction to Unimotor hd

3.1 Overview

Unimotor drib is Control Techniques' high dynamic brushless AC servo motor range, designed for operation with Digitax ST, Unidrive SP, Unidrive M and Epsilon EP drives. Unimotor provides an exceptionally compact, low inertia solution for applications where very high torque is required during rapid acceleration and deceleration profiles. The Unimotor thib torque profile is matched to Digitax ST servo drives, providing up to 300% peak overload for maximum dynamic performance.

3.1.1 Engineering excellence, innovation and reliability

Unimotor has been developed by a dedicated team using our design process that prioritises product innovation, performance and reliability. This enables new ideas to be quickly evaluated, prototyped and tested using a suite of in-house development and modelling software tools. As a result Unimotor §rib incorporates a number of unique performance enhancing design features with several patents pending. Unimotor \$dib "raises the bar" in terms of both performance and quality.

3.1.2 Key features

Unimotor ind is suitable for a wide range of industrial applications, due to its extensive features.
\rightarrow Torque range: 0.72 Nm to 85.0 Nm
\rightarrow High torque to inertia ratio for high dynamic performance
\rightarrow Compact but powerful
\rightarrow High energy dissipation brakes
\rightarrow IP65 conformance: sealed against water spray and dust when mounted and connected
\rightarrow Segmented stator design
\rightarrow World class performance
\rightarrow Supported by rigorous testing for performance and reliability
\rightarrow Winding to suit 400 V and 220 V
\rightarrow Rated speeds include 2000rpm, 3000rpm, 4000rpm and 6000rpm
\rightarrow Larger shafts to increase torsional rigidity

3.1.3 Torque performance \square Stall torque \square Peak torque (3000 rpm)

FM 30610
3.1.6 Conformance and standards

3.1.4 The ultimate motor and drive combinations

Control Techniques drive and motor combinations provide an optimised system in terms of ratings, performance, cost and ease of use. Unimotor motors fitted with high resolution SinCos or Absolute encoders are pre-loaded with the motor "electronic nameplate" data during the manufacturing process. This data can be read by Control Techniques' servo drives and used to automatically optimise the drive settings. This feature simplifies commissioning and maintenance, ensures consistent performance and saves time.

For further information on Control Techniques servo drives, please refer to the Digitax ST, Unidrive SP and Unidrive M brochures.

3.1.5 Accuracy and resolution to suit your application requirements

Choosing the right feedback device for your application is critical in getting optimum performance. Unimotor $\$ \sqrt{W}$ has a range of feedback options that offer different levels of accuracy and resolution to suit most applications:
\rightarrow Resolver: robust for extreme applications and conditions - low accuracy, medium resolution
\rightarrow Incremental encoder: high accuracy, medium resolution
\rightarrow Inductive Absolute: medium accuracy, medium resolution, single turn and multi-turn
\rightarrow Optical SinCos/Absolute: high accuracy, high resolution, single turn and multi-turn
\rightarrow Hiderface (SICK) and EnDAT (Heidenhain) protocols sudDorted

3.2 Quick reference table

3.3 Unimotor ordering code Information

Use the information below in the illustration to create an order code for a Unimotor dilb.
The details in the band are an example of an order reference.

3.4 Dimensions

3.4.1 Frame size 055 For 3 Phase VPWM drives

Motor frame size (mm)	055ED			055UD		
Voltage (Vrms)	200-240			380-480		
Frame length	A	B	C	A	B	C
Continuous Stall Torque (Nm)	0.72	1.18	1.65	0.72	1.18	1.65
Peak Torque (Nm)	2.88	4.72	6.60	2.88	4.72	6.60
Inertia (kgcm²)	0.14	0.25	0.36	0.14	0.25	0.36
Winding thermal time constant (s)	34.0	38.0	42.0	34.0	38.0	42.0
Motor weight unbraked (kg)	1.20	1.50	1.80	1.20	1.50	1.80
Motor weight braked (kg)	1.60	1.90	2.20	1.6	1.90	2.20
Number of poles	8	8	8	8	8	8
$\text { Speed } 3000(\mathrm{rpm}) \quad \begin{array}{r} \mathrm{Kt}(\mathrm{Nm} / \mathrm{A})= \\ \mathrm{Ke}(\mathrm{~V} / \mathrm{krpm})= \end{array}$	$\begin{gathered} 0.74 \\ 45.00 \end{gathered}$	$\begin{gathered} 0.87 \\ 52.50 \end{gathered}$	$\begin{gathered} 0.91 \\ 55.00 \end{gathered}$	$\begin{gathered} 0.74 \\ 45.00 \end{gathered}$	$\begin{gathered} 1.49 \\ 90.00 \end{gathered}$	$\begin{gathered} 1.65 \\ 100.00 \end{gathered}$
Rated torque (Nm)	0.70	1.05	1.48	0.70	1.05	1.48
Stall current (A)	0.97	1.36	1.81	0.97	0.79	1.00
Rated power (kW)	0.22	0.33	0.46	0.22	0.33	0.46
R (ph-ph) (Ω)	28.00	14.12	9.53	28.00	45.00	31.00
L (ph-ph) (mH)	50.00	32.00	23.00	50.00	100.00	75.00
$\text { Speed } 6000(\mathrm{rpm}) \begin{aligned} \mathrm{Kt}(\mathrm{Nm} / \mathrm{A}) & = \\ \mathrm{Ke}(\mathrm{~V} / \mathrm{krpm}) & = \end{aligned}$	$\begin{gathered} 0.45 \\ 27.00 \end{gathered}$	$\begin{gathered} 0.43 \\ 26.00 \end{gathered}$	$\begin{gathered} 0.48 \\ 29.00 \end{gathered}$	$\begin{gathered} 0.74 \\ 45.00 \end{gathered}$	$\begin{gathered} 0.79 \\ 47.50 \end{gathered}$	$\begin{gathered} 0.83 \\ 50.00 \end{gathered}$
Rated torque (Nm)	0.68	0.90	1.20	0.68	0.90	1.20
Stall current (A)	1.61	2.74	3.44	0.97	1.49	1.99
Rated power (kW)	0.43	0.57	0.75	0.43	0.57	0.75
R (ph-ph) (Ω)	8.50	3.55	2.38	28.00	10.70	7.80
L (ph-ph) (mH)	16.00	8.20	6.30	50.00	25.00	20.00

$\Delta t=100^{\circ} \mathrm{C}$ winding $40^{\circ} \mathrm{C}$ maximum ambient
All data subject to $+/-10 \%$ tolerance

Stall torque, rated torque and power relate to maximum continuous operation tested in a $20^{\circ} \mathrm{C}$ ambient at 12 kHz drive switching frequency

All other figures relate to a $20^{\circ} \mathrm{C}$ motor temperature.
Maximum intermittent winding temperature is $140^{\circ} \mathrm{C}$

Motor dimension (mm)

Drawing number: GM496400

	Feedback AR, CR, EM/FM				Flange thickness	Register length	Register diameter	Overall height	Flange square	Fixing hole diameter	Fixing hole PCD	Motor housing	Mounting bolts
	Unbrak	length	Brake	ngth									
	A	B	A	B		L	M (j 6)	N	P	R (H14)	S	T	
055A	118.0	90.0	158.0	130.0									
055B	142.0	114.0	182.0	154.0	7.0	2.5	40.0	99.0	55.0	5.8	63.0	55.0	M5
055C	166.0	138.0	206.0	178.0									

Shaft dimensions (mm)

$\left.\begin{array}{|c|c|c|c|c|c|c|c|}\hline & \begin{array}{c}\text { Shaft } \\ \text { diameter }\end{array} & \begin{array}{c}\text { Shaft } \\ \text { length }\end{array} & \begin{array}{c}\text { Key } \\ \text { height }\end{array} & \begin{array}{c}\text { Key } \\ \text { length }\end{array} & \begin{array}{c}\text { Key to } \\ \text { shaft end }\end{array} & \begin{array}{c}\text { Key } \\ \text { width }\end{array} & \begin{array}{c}\text { Tapped hole } \\ \text { thread size }\end{array}\end{array} \begin{array}{c}\text { Tapped hole } \\ \text { depth }\end{array}\right]$

3.4.2 Frame size 067 For 3 Phase VPWM drives

Motor frame size (mm)	067ED			067UD		
Voltage (Vrms)	200-240			380-480		
Frame length	A	B	C	A	B	C
Continuous Stall Torque (Nm)	1.45	2.55	3.70	1.45	2.55	3.70
Peak Torque (Nm)	4.35	7.65	11.10	4.35	7.65	11.10
Inertia (kgcm^{2})	0.30	0.53	0.75	0.30	0.53	0.75
Winding thermal time constant (s)	54	61	65	54	61	65
Motor weight unbraked (kg)	2.00	2.60	3.20	2.00	2.60	3.20
Motor weight braked (kg)	2.70	3.3	3.90	2.70	3.3	3.90
Number of poles	10	10	10	10	10	10
$\text { Speed } 3000(\mathrm{rpm}) \quad \begin{array}{r} \mathrm{Kt}(\mathrm{Nm} / \mathrm{A})= \\ \mathrm{Ke}(\mathrm{~V} / \mathrm{krpm})= \end{array}$		$\begin{gathered} 0.93 \\ 57.00 \end{gathered}$		$\begin{gathered} 0.80 \\ 49.00 \end{gathered}$	$\begin{gathered} 1.60 \\ 98.00 \end{gathered}$	$\begin{gathered} 1.60 \\ 98.00 \end{gathered}$
Rated torque (Nm)	1.40	2.45	3.50	1.40	2.45	3.50
Stall current (A)	1.56	2.74	3.98	1.81	1.59	2.31
Rated power (kW)	0.44	0.77	1.10	0.44	0.77	1.10
R (ph-ph) (Ω)	14.92	4.88	3.33	11.69	15.20	13.04
$\mathrm{L}(\mathrm{ph}-\mathrm{ph})(\mathrm{mH})$	45.43	17.40	12.70	35.18	54.20	48.65
$\text { Speed } 6000(\mathrm{rpm}) \begin{array}{r} \mathrm{Kt}(\mathrm{Nm} / \mathrm{A})= \\ \mathrm{Ke}(\mathrm{~V} / \mathrm{krpm})= \end{array}$		$\begin{gathered} 0.47 \\ 28.50 \end{gathered}$			$\begin{gathered} 0.8 \\ 49.00 \end{gathered}$	
Rated torque (Nm)	1.30	2.20		1.30	2.20	3.10
Stall current (A)	3.12	5.48		1.81	3.19	4.63
Rated power (kW)	0.82	1.38		0.82	1.38	1.95
R (ph-ph) (Ω)	3.86	1.22		11.69	3.79	2.68
$\mathrm{L}(\mathrm{ph}-\mathrm{ph})(\mathrm{mH})$	11.06	4.35		35.18	13.60	10.20

$\Delta t=100^{\circ} \mathrm{C}$ winding $40^{\circ} \mathrm{C}$ maximum ambient
All data subject to $+/-10 \%$ tolerance

Stall torque, rated torque and power relate to maximum continuous operation tested in a $20^{\circ} \mathrm{C}$ ambient at 12 kHz drive switching frequency
All other figures relate to a $20^{\circ} \mathrm{C}$ motor temperature.
Maximum intermittent winding temperature is $140^{\circ} \mathrm{C}$

Motor dimension (mm)

Drawingnumber:IM/0694/GA

	Feedback AR, CR, EM/FM, LM/NM				Flange thickness	Register length	Register diameter	Overall height	Flange square	Fixing hole diameter	Fixing hole PCD	Motor housing	Mounting bolts
	Unbrake	d length	Braked	length									
	A ± 0.9)	$B(\pm 1.0)$	$A(\pm 0.9)$	$\mathrm{B}(\pm 1.0)$	$\mathrm{K}(\pm 0.5)$	$\mathrm{L}(\pm 0.1)$	M (j6)	$N(\pm 0.3)$	$\mathrm{P}(\pm 0.3)$	R (H14)	$S(\pm 0.4)$	$\mathrm{T}(\pm 0.4)$	
067A	142.9	109.0	177.9	144.0									
067B	172.9	139.0	207.9	174.0	7.5	2.50	60.0	111.5	70.0	5.8	75.0	67.00	M5
067C	202.9	169.0	237.9	204.0									

	Feedback TL/UL			
	Unbraked length	Braked length	Unbraked length	Braked length
	$\mathrm{A}(\pm \mathbf{0 . 9)}$	$\mathrm{A}(\pm 1.0)$	$\mathrm{A}(\pm \mathbf{0 . 9)}$	$\mathrm{A}(\pm 1.0)$
067A	157.7	123.5	192.7	158.5
067B	187.7	153.5	222.7	188.5
067C	217.7	183.5	252.7	218.5

Shaft dimensions (mm)

	Shaft diameter	Shaft length	Key height	Key length	Key to shaft end	Key width	Tapped hole thread size	Tapped hole depth
14.0 Std	$\mathrm{C}(\mathrm{j} 6)$	$\mathrm{D}(\pm 0.45)$	$\mathrm{E}(\mathrm{IEC} 72-1)$	$\mathrm{F}(\pm 0.25)$	$\mathrm{G}(\pm 1.1)$	$\mathrm{H}(\mathrm{h9})$	I	$\mathrm{J}(\pm 0.1)$

3.4.3 Frame size 089 For 3 Phase VPWM drives

Motor frame size (mm)	089ED			089UD		
Voltage (Vrms)	200-240			380-480		
Frame length	A	B	C	A	B	C
Continuous Stall Torque (Nm)	3.20	5.50	8.00	3.20	5.50	8.00
Peak Torque (Nm)	9.60	16.50	24.00	9.60	16.50	24.00
Inertia (kgcm²)	0.87	1.61	2.34	0.87	1.61	2.34
Winding thermal time constant (s)	85	93	98	85	93	98
Motor weight unbraked (kg)	3.30	4.40	5.50	3.30	4.40	5.50
Motor weight braked (kg)	4.30	5.40	6.50	4.30	5.40	6.50
Number of poles	10	10	10	10	10	10
$\text { Speed } 3000(\mathrm{rpm}) \quad \begin{array}{r} \mathrm{Kt}(\mathrm{Nm} / \mathrm{A})= \\ \mathrm{Ke}(\mathrm{~V} / \mathrm{krpm})= \end{array}$		$\begin{gathered} 0.93 \\ 57.00 \end{gathered}$			$\begin{gathered} 1.60 \\ 98.00 \end{gathered}$	
Rated torque (Nm)	3.00	4.85	6.90	3.00	4.85	6.90
Stall current (A)	3.44	5.91	8.60	2.00	3.44	5.00
Rated power (kW)	0.94	1.52	2.17	0.94	1.52	2.17
R (ph-ph) (Ω)	3.28	1.57	0.89	12.85	5.05	2.68
$\mathrm{L}(\mathrm{ph}-\mathrm{ph})(\mathrm{mH})$	21.55	11.84	7.09	80.66	38.36	21.72
$\text { Speed } 4000(\mathrm{rpm}) \begin{array}{r} \mathrm{Kt}(\mathrm{Nm} / \mathrm{A})= \\ \mathrm{Ke}(\mathrm{~V} / \mathrm{krpm})= \end{array}$		$\begin{gathered} 0.70 \\ 42.75 \end{gathered}$			$\begin{gathered} 1.2 \\ 73.50 \end{gathered}$	
Rated torque (Nm)	2.90	4.55	6.35	2.90	4.55	6.35
Stall current (A)	4.57	7.86	11.43	2.67	4.58	6.67
Rated power (kW)	1.21	1.91	2.66	1.21	1.91	2.66
R (ph-ph) (Ω)	2.04	0.79	0.54	6.16	2.47	1.75
$\mathrm{L}(\mathrm{ph}-\mathrm{ph})(\mathrm{mH})$	13.20	5.97	4.38	39.78	18.80	14.03
$\text { Speed } 6000(\mathrm{rpm}) \begin{array}{r} \mathrm{Kt}(\mathrm{Nm} / \mathrm{A})= \\ \mathrm{Ke}(\mathrm{~V} / \mathrm{krpm})= \end{array}$		$\begin{gathered} 0.47 \\ 28.50 \end{gathered}$			$\begin{gathered} 0.8 \\ 49.00 \end{gathered}$	
Rated torque (Nm)	2.65	3.80	5.00	2.65	3.80	5.00
Stall current (A)	6.88	11.83	17.20	4.00	6.88	10.00
Rated power (kW)	1.67	2.39	3.14	1.67	2.39	3.14
R (ph-ph) (Ω)	0.98	0.39	0.23	3.21	1.27	0.83
$\mathrm{L}(\mathrm{ph}-\mathrm{ph})(\mathrm{mH})$	6.24	2.96	1.89	20.16	9.59	6.66

$\Delta t=100^{\circ} \mathrm{C}$ winding $40^{\circ} \mathrm{C}$ maximum ambient
All data subject to $+/-10 \%$ tolerance

Stall torque, rated torque and power relate to maximum continuous operation tested in a $20^{\circ} \mathrm{C}$ ambient at 12 kHz drive switching frequency

All other figures relate to a $20^{\circ} \mathrm{C}$ motor temperature.

Maximum intermittent winding temperature is $140^{\circ} \mathrm{C}$

Motor dimension (mm)

Drawingnumber:IM/0688/GA

	Feedback EC/FC, LC/NC				Flange thickness	Register length	Register diameter	Overall height	Flange square	Fixing hole diameter	Fixing hole PCD	Motor housing	Mounting bolts
	Unbrake	length	Braked	length									
	A ± 0.9)	$\mathrm{B}(\pm 1.0)$	A ($\pm 0.9)$	$\mathrm{B}(\pm 1.0)$	K (± 0.5)	$\mathrm{L}(\pm 0.1)$	M (j6)	$N(\pm 1.0)$	$\mathrm{P}(\pm 0.28)$	R (H14)	S ($\pm 0.4)$	$\mathrm{T}(\pm 0.7)$	
089A	147.8	110.5	187.9	150.6									
089B	177.8	140.5	217.9	180.6	10.3	2.20	80.0	130.5	91.0	7.00	100.0	89.0	M6
089C	207.8	170.5	247.9	210.6									

	Feedback		Feedback	
	FB, EB/CA/SA, RA		AE	

Shaft dimensions (mm)

	Shaft diameter	Shaft length	Key height	Key length	Key to shaft end	Key width	Tapped hole thread size	Tapped hole depth
	C (j6)	D $\pm \pm 0.45)$	E (IEC 72-1)	$\mathrm{F}(\pm 0.25)$	$\mathrm{G}(\pm 1.1)$	H (h9)	1	$\mathrm{J}(\pm 0.1)$
19.0 Std	19.0	40.0	21.5	32.0	3.7	6.0	M6×1.0	17.0

NOTE: 3D drawings of the Unimotor fm and Unimotor hd motors can be downloaded from: http://motors.controltechniques.com/

EMERSON
Industrial Automation

3.4.4 Frame size 115 For 3 Phase VPWM drives

Motor frame size (mm)	115ED			115UD		
Voltage (Vrms)	200-240			380-480		
Frame length	B	C	D	B	C	D
Continuous Stall Torque (Nm)	10.20	14.60	18.80	10.20	14.60	18.80
Peak Torque (Nm)	30.60	43.80	56.40	30.60	43.80	56.40
Inertia (kgcm²)	4.41	6.39	8.38	4.41	6.39	8.38
Winding thermal time constant (s)	164	168	175	164	168	175
Motor weight unbraked (kg)	7.20	8.90	10.70	7.20	8.90	10.70
Motor weight braked (kg)	8.70	10.40	12.20	8.70	10.40	12.20
Number of poles	10	10	10	10	10	10
$\begin{aligned} & \mathrm{Kt}(\mathrm{Nm} / \mathrm{A})= \\ & \text { Speed } 2000(\mathrm{rpm}) \\ & \mathrm{Ke}(\mathrm{~V} / \mathrm{krpm})= \end{aligned}$		$\begin{gathered} 1.40 \\ 85.50 \end{gathered}$			$\begin{gathered} 2.4 \\ 147.00 \end{gathered}$	
Rated torque (Nm)	8.60	11.90	15.60	8.60	11.90	15.60
Stall current (A)	7.29	10.43	13.43	4.25	6.08	7.83
Rated power (kW)	1.80	2.49	3.27	1.80	2.49	3.27
R (ph-ph) (Ω)	1.40	0.77	0.61	4.41	2.41	1.80
$\mathrm{L}(\mathrm{ph}-\mathrm{ph})(\mathrm{mH})$	12.84	7.87	6.62	40.59	24.69	19.45
$\text { Speed } 3000(\mathrm{rpm}) \begin{array}{r} \mathrm{Kt}(\mathrm{Nm} / \mathrm{A})= \\ \mathrm{Ke}(\mathrm{~V} / \mathrm{krpm})= \end{array}$		$\begin{gathered} 0.93 \\ 57.00 \end{gathered}$			$\begin{aligned} & 1.60 \\ & 98.00 \end{aligned}$	
Rated torque (Nm)	7.70	10.50		7.70	10.50	13.60
Stall current (A)	10.97	15.70		6.38	9.13	11.75
Rated power (kW)	2.42	3.30		2.42	3.30	4.27
R (ph-ph) (Ω)	0.58	0.39		1.83	1.21	0.78
L (ph-ph) (mH)	5.40	4.01		16.93	12.72	8.65

$\Delta t=100^{\circ} \mathrm{C}$ winding $40^{\circ} \mathrm{C}$ maximum ambient
All data subject to $+/-10 \%$ tolerance

Stall torque, rated torque and power relate to maximum continuous operation tested in a $20^{\circ} \mathrm{C}$ ambient at 12 kHz drive switching frequency

All other figures relate to a $20^{\circ} \mathrm{C}$ motor temperature.
Maximum intermittent winding temperature is $140^{\circ} \mathrm{C}$

Motor dimension (mm)

Drawingnumber:IM/0689/GA

	Feedback EC/FC, LC/NC				Flange thickness	Register length	Register diameter	Overall height	Flange square	Fixing hole diameter	Fixing hole PCD	Motor housing	Mounting bolts
	Unbrake	length	Braked	length									
	A ± 0.9)	$\mathrm{B}(\pm 1.0)$	A $\pm 0.9)$	$\mathrm{B}(\pm 1.0)$	K (± 0.5)	$\mathrm{L}(\pm 0.1)$	M (j6)	$\mathrm{N}(\pm 1.0)$	$\mathrm{P}(\pm 0.31)$	R (H14)	$S(\pm 0.4)$	T (± 0.7)	
115B	193.8	154.0	230.9	191.1									
115C	223.8	184.0	260.9	221.1	13.2	2.70	110.0	156.5	116.0	10.00	130.0	115.0	M8
115D	253.8	214.0	290.9	251.1									

	Feedback		Feedback	
	FB, EB/CA/SA, RA		AE	

Shaft dimensions (mm)

Shaft diameter	Shaft length	Key height	Key length	Key to shaft end	Key width	Tapped hole thread size	Tapped hole depth
$\mathrm{C}(\mathrm{j} 6)$	$\mathrm{D}(\pm 0.45)$	$\mathrm{E}(\mathrm{IEC} 72-1)$	$\mathrm{F}(\pm 0.25)$	$\mathrm{G}(\pm 1.1)$	$\mathrm{H}(\mathrm{h9})$	I	$\mathrm{J}(\pm 0.1)$
24.0	50.0	27.0	40.0	5.3	8.0	$\mathrm{M} 8 \times 1.25$	20.0

3.4.4 Frame size 142 For 3 Phase VPWM drives

Motor frame size (mm)	142ED			142UD		
Voltage (Vrms)	200-240			380-480		
Frame length	C	D	E	C	D	E
Continuous Stall Torque (Nm)	25.0	31.5	38.0	25.0	31.5	38.0
Peak Torque (Nm)	74.9	94.5	114.0	74.9	94.5	114.0
Inertia (kgcm²)	17.0	22.1	27.2	17.0	22.1	27.2
Winding thermal time constant (s)	245.0	251.0	256.0	245.0	251.0	256.0
Motor weight unbraked (kg)	11.5	15.0	18.5	11.5	15.0	18.5
Motor weight braked (kg)	14.3	17.8	21.3	14.3	17.8	21.3
Number of poles	10	10	10	10	10	10
$\text { Speed } 1000(\mathrm{rpm}) \quad \begin{array}{r} \mathrm{Kt}(\mathrm{Nm} / \mathrm{A})= \\ \mathrm{Ke}(\mathrm{~V} / \mathrm{krpm})= \end{array}$		$\begin{gathered} 2.8 \\ 171.0 \end{gathered}$				
Rated torque (Nm)	23.3	29.0	34.5			
Stall current (A)	8.9	11.2	13.6			
Rated power (kW)	2.44	3.04	3.61			
R (ph-ph) (Ω)	1.36	0.94	0.72			
$\mathrm{L}(\mathrm{ph}-\mathrm{ph})(\mathrm{mH})$	21.34	15.17	12.30			
Connection type	B	B	B			
$\begin{aligned} \mathrm{Kt}(\mathrm{Nm} / \mathrm{A}) & = \\ \mathrm{Se}(\mathrm{~V} / \mathrm{krpm}) & = \end{aligned}$					$\begin{gathered} 3.2 \\ 196.0 \end{gathered}$	
Rated torque (Nm)				22.3	27.0	31.7
Stall current (A)				7.8	9.8	11.9
Rated power (kW)				3.5	4.2	5.0
R (ph-ph) (Ω)				1.36	0.94	0.72
L (ph-ph) (mH)				21.34	15.17	12.30
Connection type				B	B	B
$\text { Speed } 2000(\mathrm{rpm}) \begin{array}{r} \mathrm{Kt}(\mathrm{Nm} / \mathrm{A})= \\ \mathrm{Ke}(\mathrm{~V} / \mathrm{krpm})= \end{array}$		$\begin{gathered} 1.4 \\ 85.5 \end{gathered}$			$\begin{gathered} 2.4 \\ 147.0 \end{gathered}$	
Rated torque (Nm)	21.4	25.7	29.6	21.4	25.7	29.6
Stall current (A)	17.8	22.5	27.1	10.4	13.1	15.8
Rated power (kW)	4.48	5.38	6.20	4.48	5.38	6.20
R (ph-ph) (Ω)	0.34	0.24	0.18	0.79	0.62	0.49
$\mathrm{L}(\mathrm{ph}-\mathrm{ph})(\mathrm{mH})$	5.33	3.79	3.07	12.15	9.66	8.34
Connection type	J	J	J	B	B	B
$\begin{aligned} \mathrm{Kt}(\mathrm{Nm} / \mathrm{A}) & = \\ \mathrm{Speed} 3000(\mathrm{~V} / \mathrm{krpm}) & = \end{aligned}$		$\begin{aligned} & 0.93 \\ & 57.0 \end{aligned}$			$\begin{gathered} 1.6 \\ 98.0 \end{gathered}$	
Rated torque (Nm)	18.4	20.9	C/D	18.4	20.9	23.0
Stall current (A)	26.9	33.9		15.6	19.7	23.8
Rated power (kW)	5.78	6.57		5.78	6.57	7.23
R (ph-ph) (Ω)	0.12	0.10		0.34	0.24	0.18
$\mathrm{L}(\mathrm{ph}-\mathrm{ph})(\mathrm{mH})$	1.90	1.57		5.33	3.79	3.07
Connection type	J	J	J	B	J	J

$\Delta t=100^{\circ} \mathrm{C}$ winding $40^{\circ} \mathrm{C}$ maximum ambient
All data subject to $+\mid-10 \%$ tolerance
Stall torque, rated torque and power relate to maximum continuous operation tested in a $20^{\circ} \mathrm{C}$ ambient at 12 kHz drive switching frequency

All other figures relate to a $20^{\circ} \mathrm{C}$ motor temperature.
Maximum intermittent winding temperature is $140^{\circ} \mathrm{C}$
Motor dimension (mm)

	Unbraked length		Braked length		Flange thickness	Register length	Register diameter	Overall height	Flange square	Fixing hole diameter	Fixing hole PCD	Motor housing	Mounting bolts
	A $\pm 0.9)$	$\mathrm{B}(\pm 1.0)$	A $\pm 0.9)$	$\mathrm{B}(\pm 1.0)$	K (± 0.2)	$\mathrm{L}(\pm 0.1)$	M (6)	$N(\pm 1.0)$	$\mathrm{P}(\pm 0.31)$	R (H14)	$S(\pm 0.4)$	$\mathrm{T}(\pm 0.7)$	
142C	217.0	182.5	282.5	248.0				183.5					
142D	247.0	212.5	312.5	278.0	14.0	3.4	130.0	183.5-204.5	142.0	12.0	165.0	142.0	M10
142E	277.0	242.5	342.5	308.0				183.5-204.5					

Shaft dimensions (mm)

	Shaft diameter	Shaft length	Key height	Key length	Key to shaft end	Key width	Tapped hole thread size	Tapped hole depth
	$\mathrm{C}(\mathrm{k} 6)$	$\mathrm{D}(\pm 0.45)$	$\mathrm{E}(\mathrm{IEC} 72-1)$	$\mathrm{F}(\pm 0.25)$	$\mathrm{G}(\pm 1.5)$	$\mathrm{H}(\mathrm{h9})$	I	$\mathrm{J}(\pm 1.0)$
32.0 Std	32.0	58.0	35.0	50.0	3.0	10.0	$\mathrm{M} 12 \times 1.75$	29.0

EMERSON
Industrial Automation

3.4.5 Frame size 190 For 3 Phase VPWM drives

Motor frame size (mm)	190ED			190UD		
Voltage (Vrms)	200-240			380-480		
Frame length	C	D	F	C	D	F
Continuous Stall Torque (Nm)	52.0	62.0	85.0	52.0	62.0	85.0
Peak Torque (Nm)	156.0	186.0	255.0	156.0	186.0	255.0
Inertia (kgcm^{2})	54.6	70.9	103.5	54.6	70.9	103.5
Winding thermal time constant (s)	311.0	316.0	324.0	311.0	316.0	324.0
Motor weight unbraked (kg)	23.5	28.6	38.8	23.5	28.6	38.8
Motor weight braked (kg)	28.8	33.9	44.1	28.8	33.9	44.1
Number of poles	10	10	10	10	10	10
$\text { Speed } 1000(\mathrm{rpm}) \quad \begin{array}{r} \mathrm{Kt}(\mathrm{Nm} / \mathrm{A})= \\ \mathrm{Ke}(\mathrm{~V} / \mathrm{krpm})= \end{array}$		$\begin{gathered} 2.8 \\ 171.0 \end{gathered}$				
Rated torque (Nm)	49.0	56.5	77.5			
Stall current (A)	18.6	22.1	30.4			
Rated power (kW)	5.13	5.92	8.12			
R (ph-ph) (Ω)	0.47	0.40	0.23			
$\mathrm{L}(\mathrm{ph}-\mathrm{ph})(\mathrm{mH})$	12.30	10.40	6.79			
$\text { Speed } 1500(\mathrm{rpm}) \begin{array}{r} \mathrm{Kt}(\mathrm{Nm} / \mathrm{A})= \\ \mathrm{Ke}(\mathrm{~V} / \mathrm{krpm})= \end{array}$					$\begin{gathered} 3.2 \\ 196.0 \end{gathered}$	
Rated torque (Nm)				46.2	52.2	68.5
Stall current (A)				16.3	19.4	26.6
Rated power (kW)				7.26	8.20	10.76
R (ph-ph) (Ω)				0.55	0.38	0.23
L (ph-ph) (mH)				14.15	10.40	6.79
$\text { Speed } 2000(\mathrm{rpm}) \begin{array}{r} \mathrm{Kt}(\mathrm{Nm} / \mathrm{A})= \\ \mathrm{Ke}(\mathrm{~V} / \mathrm{krpm})= \end{array}$		$\begin{gathered} 1.4 \\ 85.5 \end{gathered}$			$\begin{gathered} 2.4 \\ 147.0 \end{gathered}$	
Rated torque (Nm)	42.5			42.5		
Stall current (A)	37.1			21.7		
Rated power (kW)	8.90			8.90		
R (ph-ph) (Ω)	0.12			0.32		
$\mathrm{L}(\mathrm{ph}-\mathrm{ph})(\mathrm{mH})$	3.07			8.20		

$\Delta t=100^{\circ} \mathrm{C}$ winding $40^{\circ} \mathrm{C}$ maximum ambient All data subject to $+/-10 \%$ tolerance

Stall torque, rated torque and power relate to maximum continuous operation tested in a $20^{\circ} \mathrm{C}$ ambient at 6 kHz drive switching frequency

All other figures relate to a $20^{\circ} \mathrm{C}$ motor temperature.
Maximum intermittent winding temperature is $140^{\circ} \mathrm{C}$

Motor dimension (mm)
Drawingnumber:IM/00710/GA

	Unbraked length		Braked length		Flange thickness	Register length	Register diameter	Overall height	Flange square	Fixing hole diameter	Fixing hole PCD	Motor housing	Mounting bolts
	A $\pm 0.9)$	$\mathrm{B}(\pm 1.0)$	A $\pm 0.9)$	$\mathrm{B}(\pm 1.0)$	$\mathrm{K}(\pm 0.2)$	$\mathrm{L}(\pm 0.1)$	M (j6)	$N(\pm 1.0)$	$\mathrm{P}(\pm 0.31)$	R (H14)	$S(\pm 0.4)$	T (± 0.7)	
190C	220.6	191.1	319.1	289.6									
190D	250.6	221.1	349.1	319.6	18.5	3.9	180.0	252.5	190.3	14.5	215.0	190.0	M12
190F	310.6	251.1	409.1	379.6									

Shaft dimensions (mm)

	Shaft diameter	Shaft length	Key height	Key length	Key to shaft end	Key width	Tapped hole thread size	Tapped hole depth
	C (k6)	D (± 0.45)	E (IEC 72-1)	$F(\pm 0.25)$	$\mathrm{G}(\pm 1.5)$	H (h9)	1	$\mathrm{J}(\pm 1.0)$
38.0 Std	38.0	80.0	41.0	70.0	4.6	10.0	M12 $\times 1.75$	29.0

4 Generic information

4.1 Performance definitions

Stall torque	This is the maximum torque within the continuous zone at zero speed. Maximum continuous torque ratings may be intermittently exceeded for short periods provided that the winding $\Delta \mathrm{t}$ max temperature is not exceeded.
	$\Delta \mathrm{t}$ max $=100^{\circ} \mathrm{C}$ over a maximum ambient of $40^{\circ} \mathrm{C}$ for Unimotor fm.
Stall current	Stall current = Stall torque $/ \mathrm{kt}$ Motor label and performance tables quote stall current when motor is at full power in a maximum ambient of $40^{\circ} \mathrm{C}$.
Rated speed	This is the maximum speed of the motor within the continuous zone. The motor speed can be controlled to any speed subject to the voltage limits and drive constraints as shown by the intermittent zone on the graph (see speed limits).
Ke voltage	This is the phase to phase rms voltage generated at the constant stator when the shaft is back driven at 1000 rpm with the rotor at $20^{\circ} \mathrm{C}$.
Kt torque	A brushless motor delivers torque proportional to the current, such that torque $=k t x$
constant	Where kt = 0.0165 x ke (at 20 $\left.0^{\circ} \mathrm{C}\right)$.
Magnets used on all motors are affected by temperature such that ke and kt reduce with increasing temperatures of the magnets. The reductions depends upon the magnet type and material grade used.	

Winding thermal time constant	The thermal time constant of the winding with respect to the stator temperature as a reference in the exponential temperature rise given by the formulae:- Winding temperature at time t seconds $=\mathrm{T} 0+\mathrm{T} 1(1-\mathrm{e}-\mathrm{t} / \mathrm{tc})$ Where T 0 is the initial temperature, T 1 is the final winding temperature and $\mathrm{tc}=$ thermal time constant (seconds) Note that temperature $=63.2 \%$ of T 1 when $\mathbf{t}=\mathbf{t c}$ A thermal protection trip is provided by the drive, based upon calculations using elapsed time, current measurement, and the parameter settings set by the user or directly from the motor map. Unimotor fm's windings are ultimately protected by thermistor devices in the winding overhangs. These must be connected to the appropriate drive inputs via the motor feedback signal connector.
Rated power	This is the product of the rated speed (radian/sec) and the rated torque (Nm) expressed in Watts (W).
Δt temperature	Δt temperature is the temperature difference between the copper wires of the motor winding and the ambient air temperature surrounding the motor. The maximum Δt temperature permitted is $100^{\circ} \mathrm{C}$ over a maximum ambient of $40^{\circ} \mathrm{C}$. (i.e. a maximum winding temperature of $140^{\circ} \mathrm{C}$)

4.2 Motor selection

Motor derating

Any adverse operating conditions require that the motor performance be derated. These conditions include; ambient temperature above $40^{\circ} \mathrm{C}$, motor mounting position, drive switching frequency or the drive being oversized for the motor.

Ambient temperatures

The ambient temperature around the motor must be taken into account. For ambient temperatures above $40^{\circ} \mathrm{C}$ the torque must be derated using the following formula as a guideline. (Note: Only applies to 2000/3000rpm motors and assumes copper losses dominate)

New derated torque $=$ Specified torque $x \sqrt{ }\left[1-\left(\left(\right.\right.\right.$ Ambient temperature $\left.\left.\left.-40^{\circ} \mathrm{C}\right) / 100\right)\right]$
For example with an ambient temperature of $76^{\circ} \mathrm{C}$ the new derated torque will be $0.8 \times$ specified torque.

Mounting arrangements

The motor torque must be derated if the motor mounting surface is heated from an external source, such as a gearbox. The motor is connected to a poor thermal conductor. The motor is mounted with the connectors on the side or vertical. The motor is in a confined space with restricted air flow.

Drive switching frequency

Most Digitax ST / Unidrive © for the higher switching frequencies see Digitax ST or Unidrive © manual for details.

See the table below for the motor de rate factors. These figures are for guidance only.
(Note: Only applies to motors up to 3000rpm and assumes copper losses dominate)

Switching frequency	055	067	089	115	142	190
3 kHz	0.92	0.93	0.89	0.89	0.83	0.90
4 kHz	0.93	0.94	0.91	0.92	0.85	0.95
6 kHz	0.95	0.95	0.95	0.96	0.88	1
8 kHz	0.96	0.98	0.97	0.98	0.91	1
$12 / 16 \mathrm{kHz}$	1	1	1	1	1	1

Thermal test conditions

The performance data shown has been recorded under the following conditions. Ambient temperature $20^{\circ} \mathrm{C}$, with the motor mounted on a thermally isolated aluminum plate as shown below.

Motor type/frame	Aluminium heatsink plate
055 mm	$110 \times 110 \times 27 \mathrm{~mm}$
$067-089 \mathrm{~mm}$	$250 \times 250 \times 15 \mathrm{~mm}$
$115-142 \mathrm{~mm}$	$350 \times 350 \times 20 \mathrm{~mm}$
190 mm	$500 \times 500 \times 20 \mathrm{~mm}$

Thermal protection

Thermistor protection $\left(145^{\circ} \mathrm{C}\right)$ is built into the motor windings and gives an indication of serious overheating problems. The installer must connect the thermistor to the drive, failure to do so will invalidate the motor warranty in respect of a burnt out winding.

Environmental conditions

Any liquids or gases that may come into contact with the motor must be confirmed to ensure compliance with the correct international standards.

4.3 Nameplate

4.3.1 Unimotor fm

4.3.2 Unimotor hd

$\left.\begin{array}{lllll}\text { F/B } & \begin{array}{l}\text { The feedback device count and working voltage or the } \\ \text { feedback type. }\end{array} & & \text { ICS } & \end{array} \begin{array}{l}\text { The Constant stall current at the maximum winding } \\ \text { temperature of } 140^{\circ} \mathrm{C} .\end{array}\right]$

4.4 Motor selection

A reliable servo system depends upon the initial system design and correct selection of the motor, feedback, gearbox and drive. To ensure success careful attention should be paid to the following points:
\rightarrow Speed, acceleration and inertia
\rightarrow Peak and rms torque
\rightarrow Motor feedback type
\rightarrow Gear ratios
\rightarrow Drive system operational mode
\rightarrow Thermal effects
\rightarrow Environmental conditions
\rightarrow Mechanical restrictions
\rightarrow Cost of motor-drive combination

It is necessary to estimate the root mean square (rms) torque value of the load. Where the motor has varying duty cycles it may be necessary to consider the worst case only.

Never exceed the maximum peak torque ratings.
Calculate the rms load torque at the motor and ensure that this is less than the motor rated torque. An additional allowance should be made on the load for inefficiencies and tolerance.

Choose a suitable motor within the size limitations of the installation. The frame size and motor speed may be selected using the performance data. Look for the rated torque at the appropriate temperature.

4.5 Checklist of operating details

Complete this checklist to help select which Unimotor fm best suits your application requirements.

Torque speed

\rightarrow What motor operating speed do you require (rpm)?
$\rightarrow 500$
$\rightarrow 1000$
$\rightarrow 2000$
$\rightarrow 3000$
$\rightarrow 4000$
$\rightarrow 6000$
\rightarrow Other (non standard speed)
\rightarrow What is the rms torque?
Decide on switching frequencies for the drive, and derate motor or drive accordingly
\rightarrow If the ambient temperature is above $40^{\circ} \mathrm{C}$, apply a derating factor. If the motor is mounted to a hot interface; or interfaced with a low thermal mass; or high thermal resistance; apply a derating factor. Torque ratings of motors are stated in controlled conditions mounted on a reference front plate. Details can be found in the Performance data selection
\rightarrow Inertia mismatch (ratio of the motor inertia to load inertia reflected to motor shaft) can be as high as 3:1 for acceleration rates of $1000 \mathrm{rad} / \mathrm{s}^{2}$ for a typical system. Larger mismatches or acceleration can be tolerated with a rigid mechanical system and high resolution feedback
\rightarrow Do you require a brake?

Motor mounting

\rightarrow Does the motor fit the machine?
Make allowances for cables and connections.
\rightarrow Do you require an output key?
\rightarrow Output key
\rightarrow Plain shaft
NB. When a gearbox is fitted, this choice applies to the gearbox o/p shaft, as supplied by Control Techniques Dynamics.

Feedback

\rightarrow Do you want an encoder or resolver?
\rightarrow Incremental
\rightarrow SinCos Multi turn
\rightarrow SICK Hiperface
\rightarrow Heidenhain EnDat
\rightarrow Inductive absolute
\rightarrow High accuracy
\rightarrow SinCos Single turn
\rightarrow SICK Hiperface
\rightarrow Heidenhain EnDat
\rightarrow Inductive
\rightarrow High accuracy
\rightarrow Resolver

Electrical connections

\rightarrow Connectors
\rightarrow Power and Signal 90° fixed
\rightarrow Power and Signal 90° rotatable
\rightarrow Power 90° rotatable and Signal vertical
\rightarrow Power and Signal vertical

Other options

\rightarrow Do you require a gearbox?
\rightarrow Yes
\rightarrow No
\rightarrow Many other customer special motors are made by Control Techniques Dynamics Limited.
For further details, contact us.

4.6 Points to consider

Torque and temperature

\rightarrow The maximum allowable temperature of the motor windings or feedback device should not be exceeded. The windings have a thermal time constant ranging from 90 seconds to over an hour. Dependent upon motor temperature the motor can be overdriven for shorter periods without exceeding the temperature limitations. The motor winding thermal time constant should be set-up in the drive; this parameter is used for thermal shock $\left(1^{2} \mathrm{t}\right)$ calculations within the drive
\rightarrow The motor winding thermal time constant should be large in comparison with the medium term periods of high rms torque
\rightarrow Ensure that the drive's features, such as switching frequency, waveforms, peak and continuous currents are suitable for the application. Low switching frequencies of the drive will require motor derating
\rightarrow Torque estimates should include friction and acceleration (and hence inertia) calculations
\rightarrow Consider the motor cooling effects; for example, is the conductive thermal path adequate? Is the motor mounted on a gearbox or heat source?
\rightarrow Ensure that the motor and drive can meet the short term peak torque requirements

Braking

\rightarrow The installation may require static parking brake

Inertia

\rightarrow Ensure that the motor has correct inertia matching to suit the acceleration requirements. Consider inertia load matching especially for acceleration levels above 1000 $\mathrm{rad} / \mathrm{s}^{2}$. Motors with larger frame diameters have higher inertia. Higher inertia rotor options are available

Environmental conditions

\rightarrow Other environmental factors, such as vibration, pressure, shock, heat and hazardous zones should be considered

Cables

\rightarrow The cable lengths required for the installation should be considered. For maximum cable length, see Maximum cable length in the Cable section. Compliance with both Safety and EMC regulations should be ensured
\rightarrow Ensure motor is mounted firmly and properly earthed. Screen all cables to reduce system noise and EMC

Feedback

\rightarrow To achieve an efficient system it is necessary to ensure stiff mechanical connections and couplings to all rotating parts, so that a high servo bandwidth can be achieved. This will improve stability and enable higher servo gains to be set, ensuring higher accuracy and positional repeatability
\rightarrow High resolution feedbacks will increase stability and allow greater acceleration or inertia mismatch

Bearing loads

\rightarrow Check the radial and axial loadings are within the limits of the motor

4.7 Special motor requests

Control Techniques Dynamics offer many "special" motors. These motors are designed to meet a specific customer's requirements.

Special motors are denoted by a code on the end of the part number. S*** 3 or 4 digits; e.g. 115U2E100BACAA115240-SON (special coating)
To request a "special" motor please contact CTDynamics Technical Support with the customer requirements. A product enquiry form will be raised and R\&D/Engineering will investigate the feasibility of the request. If acceptable then a "special" part number reference will be allocated to the motor and a quote will be issued.

Once an order is placed a Product Approval Schedule (PAS) form will be raised and sent to the Drive Centre for approval.

Special motors can include:
\rightarrow Special paint finishes or unpainted motors
\rightarrow Special motors with customer specific connector wiring
\rightarrow Special motors with customer specific brakes
\rightarrow Special motors with customer specific shaft dimension
\rightarrow Special motors for harsh environments motors

4.8 Calculating load torque

In any application, the load consists of various torque loads plus acceleration and decelerations of inertia.

Constant torque periods

Periods where a torque is maintained at constant or near constant motor speeds.

Acceleration and deceleration

Torque is required to achieve acceleration and deceleration. Acceleration times of less than one second can often be achieved using peak torque capability of the drive and motor.

Note
Peak drive current may be set by drive control to the motors continuous current rating. If this is required, check that it is within the drives capability. Medium periods of up to 200% over current are often acceptable for the motor, provided that the heating effects are not too rapid and that the motor thermal time constant is long in comparison.
Inertia formula and accelerating or decelerating torques:
Inertial loads on a common shaft may be added together. Inertial loads may be reflected from the output of a reduction gearbox to the motor by dividing the output ratio by the square of the ratio.

Total inertia $=$ reflected inertial load at motor + motor inertia

rms torque for a repetitive duty cycle:
Draw a graph of torque (T) against time for one complete repetitive cycle of events (or choose the worst case of various events). Make the torque axis vertical. On the same graph, draw the speed profile against time for one cycle.

From the above speed-torque diagram calculate the rms torque using the formula:

Trms $=\sqrt{\frac{\mathrm{Ta}^{2} \times \mathrm{ta}+\mathrm{TL}^{2} \times \mathrm{tL}+\mathrm{Td}^{2} \times \mathrm{td} \times \mathrm{Ts}^{2} \times \mathrm{ts}}{\mathrm{ta}+\mathrm{tL}+\mathrm{td}+\mathrm{ts}}}$
Where:
Ta = Acceleration Torque (Nm)
tL = On load running time (s)
TL = Load torque (Nm)
td = Deceleration time (s)
Td = Deceleration torque (Nm)
ts = Dwell time (s)
ta $=$ Acceleration Time (s)
VL = Full load speed (rpm)
$\mathrm{Ts}=$ Dwell torque ($\mathrm{Nm}=0$)

Example

In an application where the torque speed profile is as above with $\mathrm{Ta}=20 \mathrm{Nm}, \mathrm{TL}=5 \mathrm{Nm}, \mathrm{Td}=-10 \mathrm{Nm}, \mathrm{ta}=20 \mathrm{~ms}, \mathrm{tL}=5 \mathrm{~s}$, td $=30 \mathrm{~ms}, \mathrm{ts}=3 \mathrm{~s}, \mathrm{VL}=3000 \mathrm{rpm}$, $\mathrm{Ts}=0$
calculate the rms torque for this application.
Trms $=\sqrt{\frac{20^{2} \times 0.02+5^{2} \times 5+10^{2} \times 0.03 \times 0^{2} \times 3}{0.02+5+0.03+3}}$
Trms $=\sqrt{\frac{136}{8.05}}$

Trms $=4.11 \mathrm{Nm}$

15% tolerance required hence the rms torque for this application $=4.73 \mathrm{Nm}$

4.9 Understanding motor heating effects

During operation, the motor is subjected to heating effects from several sources. Some of these are obvious; others obscure. Whilst the motor specification allows for most of these heating effects, others depend on the application. This section examines some of the causes of motor heating.

Motor copper losses

Motor copper loss is a product of the rms current squared and the resistance of the motor windings. It includes ripple currents, determined by the switching frequency of the drive and the inductance of the motor. The inductance of the winding is generally low, so that the maximum drive frequencies should be selected commensurate with drive heating losses. Data in this manual is for switching frequencies as stated in the performance data section. If lower frequencies are used, motor performance is reduced.

Motor copper loss also includes losses arising from waveform distortions of either the drive or motor or both. The motor's back EMF waveform is sinusoidal and of low harmonic distortion. If lower frequencies are used, the drive current has higher distortion and hence the motor performance is reduced.

Motor current depends on the torque demanded by the load at any instant. This is normally given by the motor torque constant (Kt) in Nm / A. Although regarded as a constant, Kt decreases slightly when the motor is at maximum temperature.

The Ke for a brushless three phase motor is always quoted Volts(rms) per Krpm, since the motor back emf is sinusoidal.

Motor iron losses

Motor iron loss is a heating effect produced in the motor laminations. It is caused by the rotating magnetic field cutting through the laminations, the higher the speed the higher the losses. For this reason the motor stall torque is greater than the motor rated torque at speed.

Iron loss depends on the strength of the magnetic field and type of laminations material.

Friction and windage

The bearings, oil seals and the air resistance to rotor speed cause internal friction. Its effect is relatively small and is included in the data provided.

Thermal protection

An incorrect system set up can give rise to excessive motor temperatures. This can be guarded against by the use of the motor thermistor protection facility.

Servo motor/drive system faults
Common but often unnoticed causes of motor overheating can be created by:
\rightarrow Instability (self induced oscillation) within the overall servo feedback system
\rightarrow Incorrect parameter settings in the drive protection system, for example peak current, and $I^{2} \mathrm{t}$ (thermal protection calculation for the drive)

Thermistor protection

A PTC thermistor rated to $145^{\circ} \mathrm{C}$, is built into the motor windings and is used to protect the motor against overheating problems.

The device remains a low resistance until a critical temperature is reached, where it will then switch to a very high resistance. The increase in resistance is measured by the drive and a "th trip" will occur. Only once the motor has cooled can the trip be cleared.

The installer must connect the motor thermistor to the drive to cause motor power shutdown in the event of overheating. It is the installer's responsibility to ensure that this protection facility is properly connected and set at the drive.
Failure to ensure the correct operation of the protection facility invalidates the warranty in respect of a burnt out winding.

Environment and torque derating

The ambient temperature of the environment into which the Unimotor fm is mounted must be considered.

4.10 Motor derating

Motor derating

Any adverse operating conditions require that the motor performance be derated. These conditions include; ambient temperature above $40^{\circ} \mathrm{C}$, motor mounting position, drive switching frequency or the drive being oversized for the motor.

Ambient temperatures

The ambient temperature around the motor must be taken into account. For ambient temperatures above $40^{\circ} \mathrm{C}$ the torque must be derated using the following formula as a guideline. (Note: Only applies to 2000/3000rpm motors and assumes copper losses dominate.)

New derated torque $=$ Specified torque $x \sqrt{\left[1-\left(\left(\text { Ambient temperature }-40^{\circ} \mathrm{C}\right) / 100\right)\right]}$
For example with an ambient temperature of $76^{\circ} \mathrm{C}$ the new derated torque will be $0.8 \times$ specified torque.

Mounting arrangements

The motor torque must be derated if:
\rightarrow The motor mounting surface is heated from an external source, such as a gearbox.
\rightarrow The motor is connected to a poor thermal conductor.
\rightarrow The motor is in a confined space with restricted air flow.

Drive switching frequency

Most Unidrive $\mathfrak{C H P}$ and Digitax ST nominal current ratings are reduced for the higher switching frequencies. See the appropriate drive manual for details.

See the table below for the motor derate factors.
These figures are for guidance only.

4.11 Motor derate factors

4.11.1 Unimotor fm

Switching frequency	Motor type/frame									
	055	075	095	115		142		190		250
	A-C	A-D	A-E	A-C	D-E	A-C	D-E	A-B	C-H	D-F
3 kHz	0.92	0.93	0.88	0.89	0.84	0.87	0.81	0.98	N/A	0.88
4 kHz	0.93	0.94	0.91	0.91	0.87	0.91	0.86	0.99	0.55	0.90
6 kHz	0.95	0.95	0.93	0.93	0.90	0.94	0.89	0.99	0.77	0.94
8 kHz	0.96	0.98	0.97	0.97	0.95	0.97	0.96	1	0.90	0.98
12/16kHz	1	1	1	1	1	1	1	1	1	1

Note
Only applies to motors up to 3000 rpm (rms) for frame sizes 055 to 190 and 1500 rpm (rms) for frame size 250 . Assumes copper losses dominate on all frame sizes.

Derate factor is applied to stall torque, rated torque, stall current and rated power.

4.11.2 Unimotor hd

Switching frequency	Motor type/frame					
	055	067	089	115	142	190
3 kHz	0.92	0.93	0.89	0.89	0.83	0.90
4 kHz	0.93	0.94	0.91	0.92	0.85	0.95
6 kHz	0.95	0.95	0.95	0.96	0.88	1
8 kHz	0.96	0.98	0.97	0.98	0.91	1
12/16kHz	1	1	1	1	1	1

Note
Only applies to motors up to 3000rpm (rms) and assumes copper losses dominate.

4.12 Feedback selection

Feedback device part number code	Feedback type	Manufacturer	Encoder supply voltage ${ }^{1}$	SinCos cycles or incremental pulses per revolution	Resolution available to position loop ${ }^{283}$	Multi -turn option ${ }^{1}$	Other information ${ }^{1}$	Feedback accuracy ${ }^{1}$	Vibration ${ }^{1}$	Shock Limit ${ }^{1}$
AE	Resolver	API Harrowe	6 Vdc rms Excitation 6 kHz	1	$\begin{gathered} \text { Medium } \\ 16384 \text { (14 bit) } \end{gathered}$	No	Transformation ratio 0.31 Resolver rotor winding 2 pole	$\begin{aligned} & \text { Low } \\ & \pm 720 " \end{aligned}$	$\begin{gathered} \text { High } \\ \text { (not stated by } \\ \text { supplier) } \end{gathered}$	$\begin{gathered} \text { High } \\ \text { (not stated by } \\ \text { supplier) } \end{gathered}$
$\begin{gathered} \text { CA } \\ \text { MA } \\ \text { KA } \end{gathered}$	Incremental Encoder	SICK	5 Vdc	$\begin{aligned} & 4096 \\ & 2048 \\ & 1024 \\ & \hline \end{aligned}$	Medium 16384 (14 bit) 8192 (13 bit) 4096 (12 bit)	No	Quadrature tracks	$\begin{aligned} & \text { High } \\ & \pm 60 " \end{aligned}$	$\begin{gathered} \text { Medium } \\ 20 \mathrm{~g} \\ (10-2000 \mathrm{~Hz}) \\ \text { (to BS EN } \\ 60068-2-6) \\ \hline \end{gathered}$	```Medium 100g per 10ms (to BS EN 60068-2-27)```
EC (Multi-turn) FC (Single turn)	Inductive absolute encoder	Heidenhain	7-10Vdc	32	Medium Absolute position 524288 (19 bits)	Yes 4096 revs (12 bits)	EnDat serial comms	Medium $\pm 280 "$	Medium 10 g $(55-2000 \mathrm{~Hz})$ (to IEC60 $068-2-6$)	Medium 100 g 6 ms (to IEC60 068- $2-27$)
RA (Multi-turn) SA (Single turn)	SinCos optical encoder	SICK	7-12Vdc	1024	$\begin{aligned} & \text { High } \\ & 1.04 \times 10^{\wedge} 6 \\ & (20 \text { bits }) \end{aligned}$	Yes 4096 revs (12 bits)	Hiperface	High For sin/cos Integral non-linearity $\pm 45 "$ For sin/cos Differential nonlinearity ± 7 " (Total accuracy $\pm 52^{\prime \prime}$)	$\begin{gathered} \text { Medium } \\ 20 \mathrm{~g} \\ (10-2000 \mathrm{~Hz}) \\ \text { (to BS } \\ \text { EN } 60068-2-6) \end{gathered}$	$\begin{aligned} & \text { Medium } \\ & 100 \mathrm{~g} \text { per } 10 \mathrm{~ms} \\ & \text { (to BS } \\ & \text { EN 60068-2-27) } \end{aligned}$
EB (Multi-turn) FB (Single turn)	SinCos optical encoder	Heidenhain	$3.6-14 \mathrm{Vdc}$	2048	$\begin{gathered} \text { Very High } \\ 2.08 \times 10^{\wedge} 6 \\ (21 \text { bits }) \end{gathered}$	Yes 4096 revs (12 bits)	EnDat Serial comms	Very High ± 20 " (Differential non linearity $\pm 1 \%$ signal period)	$\begin{gathered} \text { Medium } \\ 15 \mathrm{~g} \\ (55-2000 \mathrm{~Hz}) \\ \text { (to } \\ \text { IEC60 068-2-6) } \end{gathered}$	Medium 100 g 6 ms (to IEC 60 068-2-27)
AR	Resolver	$\begin{gathered} \text { LTN } \\ \text { RE-15 } \end{gathered}$	7Vdc Excitation 5 kHz	1	$\begin{gathered} \text { Medium } \\ 16384 \text { (14 bit) } \end{gathered}$	No	Transformation ratio $0,5 \pm 10 \%$ Resolver rotor winding 2 pole	$\begin{aligned} & \text { Low } \\ & \pm 600 " \end{aligned}$	$\begin{gathered} \text { High } \\ 50 \mathrm{~g} \\ (10 \text { to } 500 \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} \text { Medium } \\ 100 \mathrm{~g} \\ (11 \mathrm{~ms}) \end{gathered}$
$\begin{gathered} \text { KR } \\ \text { MR } \\ \text { CR } \end{gathered}$	Incremental encoder	$\begin{gathered} \text { Renco } \\ \text { R35i } \end{gathered}$	5Vdc	$\begin{aligned} & 1024 \\ & 2048 \\ & 4096 \end{aligned}$	Medium 4096 (12 bit) 8192 (13 bit) 16384 (14 bit)	No		Medium $\pm 150 "$	$\begin{gathered} \text { Medium } \\ 10 \mathrm{~g} \\ (200 \text { to } 2000 \mathrm{~Hz}) \end{gathered}$	$\begin{aligned} & \text { Medium } \\ & 50 \mathrm{~g} \\ & (11 \mathrm{~ms}) \end{aligned}$
EM (Multi-turn) FM (Single turn)	Inductive absolute encoder	Heidenhain EQI1130 ECI1118	5 Vdc	16	$\begin{aligned} & \text { Medium } \\ & 2.62 \times 10^{\wedge} 5 \\ & (18 \text { bits }) \end{aligned}$	$\begin{gathered} \text { Yes } \\ 4096 \text { revs } \\ \text { (12 bits) } \end{gathered}$	EnDat Serial comms	Medium $\pm 480 "$	Medium 30 g $(55$ to 2000 Hz) $($ EN $60068-2-6)$	Medium 100 g $(6 \mathrm{~ms})$ (EN $60068-2-27$)
TL (Multi-turn) UL (Single turn)	SinCos optical encoder	$\begin{aligned} & \text { SICK } \\ & \text { SKM36 } \\ & \text { SKS36 } \end{aligned}$	7-12Vdc	128	$\begin{aligned} & \text { Medium } \\ & 1.31 \times 10^{\wedge} 5 \\ & (17 \mathrm{bit}) \end{aligned}$	Yes 4096 revs (12 bits)	Hiperface	$\begin{aligned} & \text { High } \\ & \pm 52^{\prime \prime} \end{aligned}$	$\begin{gathered} \text { Medium } \\ 50 \mathrm{~g} \\ (10 \text { to } 2000 \mathrm{~Hz}) \\ (\text { EN } 60068-2-6) \end{gathered}$	$\begin{gathered} \text { Medium } \\ 100 \mathrm{~g} \\ (6 \mathrm{~ms}) \\ \text { (EN } 60068-2-27) \end{gathered}$
TM (Multi-turn) UM (Single turn)	SinCos optical encoder	Heidenhain EQN1125 ECN1113	3,6-14Vdc	512	$\begin{gathered} \text { Medium } \\ 5.24 \times 10^{\wedge} 5 \\ (19 \mathrm{bit}) \end{gathered}$	Yes 4096 revs (12 bits)	EnDat Serial comms	$\begin{aligned} & \text { HIgh } \\ & \pm 60 " \end{aligned}$	Medium 20 g $(55$ to 2000 Hz) $($ EN $60068-2-6)$	Medium 100 g $(6 \mathrm{~ms})$ (EN 60068-2-27)
LM (Multi-turn) NM (Single turn)	Inductive Absolute Encoder EnDat 2.2 (Serial comms only)	5Vdc	16	$\begin{aligned} & \text { Medium } \\ & 2.62 \times 10^{\wedge} 5(18 \\ & \text { bits }) \end{aligned}$	$\begin{aligned} & \text { Medium } \\ & +/-480 " \end{aligned}$					
$\begin{gathered} \text { LC } \\ \text { (Multi-turn) } \\ \text { NC } \\ \text { (Single turn) } \end{gathered}$	Inductive Absolute Encoder EnDat 2.2 (Serial comms only)	7-10Vdc	32	Medium Absolute position 524288 (19 bits)	$\begin{aligned} & \text { Medium } \\ & +/-280 " \end{aligned}$					
${ }^{1}$ The information is supplied by the feedback device manufacturer and relates to it as a standalone device. The values may change when mounted into the motor and connected to a drive. These values have not been verified				${ }^{2}$ The output from the resolver is an anologue output. The resolution is determined by the anologue to digitial converter used. The value shown is when the resolver is used in conjunction with the SM-Resolver.				${ }^{3}$ The sin and cosine outputs from the SinCos optical encoders are analogue outputs. With Unidrive SP and Digitax ST the resolutions quoted above are when the encoder type is set to either SC Endat or SC Hiper depending on the encoder.		

4.13 Feedback terminology

Accuracy

Accuracy is the measure of the difference between the expected position and actual measured value. Rotary feedback accuracy is usually given as an angle representing the maximum deviation from the expected position. Linear feedback accuracy is usually given as a distance representing the maximum deviation from the expected. Generally, as accuracy increases the cost of the feedback device increases.

Absolute Absolute encoders output unique information for each encoder mechanical measured position. With the motor shaft or plate in any position when the drive is turned on the feedback device will always be able to sense a unique position and transmit this value to the drive. For an absolute single turn rotary encoder these unique positions will be over one revolution.

When power is removed from the encoder and the shaft or plate moves the device will know its current position when the power is restored.

A non-absolute feedback mechanism must start from a known position, such as the index or marker pulse.

Bit A bit is short for Binary Digit. It is the smallest unit of information in a machine/drive. A single bit has a binary value of either 0 or 1 . These bits do not normally exist on their own, but usually in groups. The larger the number of bits in a group the larger the amount of information that is available and thus the higher the resolution. This group can be converted to decimal using binary arithmetic. The group of bits can be converted to decimal by starting at the right most bit and multiplying each successive bit to the left by two. So for example a 12 bit number would give a decimal equivalent of 4,096 and a 19 bit number would give a decimal equivalent of 524,288.

Commutation All brushless $A C$ permanent magnet motors require commutation information to enable the drive to synchronise the stator flux field with the rotor of the motor.

To ensure optimum torque at all rotor positions both when stationary and at speed the drive is required to maintain motor current in phase with the peak of the motor's sinusoidal waveform. The drive must therefore know the position of the rotor with respect to the stator at all times.

Commutation Most drives, including the Unidrive SP, provide a "Phase phase offset Offset" adjustment as a means of correctly setting the commutation position.
For feedback devices that are not aligned, the Unidrive SP has an Encoder Phasing Test (Autotune) (Pr 5.12) that automatically creates a Phase Offset value (Encoder phase angle) ($\operatorname{Pr} 3.25$).

All FM motor feedback devices are set to match the Unidrive SP definition of zero phase offset, so that the drive may operate with zero phase offset adjustment, thus allowing interchange of motors between drives without further adjustment.

Note that not all drives have the same zero offset definition.

Commutation Commutation outputs are used on devices that are nonoutputs absolute. For AC Synchronous 3 phase motors there are 3 commutation output signal channels from the feedback device, for example S1, S2 and S3.

The diagram below shows commutation outputs for 6 pole commutation (3 pole pairs). The 3 phase motor sinusoidal power from the drive runs synchronously with motor speed at $\mathrm{N} / 2$ cycles per revolution;

Where $N=$ number of poles. For example a 6 pole motor the encoder commutation tracks will output 3 pulses per channel per revolution and for an 8 pole motor the encoder commutation tracks will give 4 pulses per channel per revolution.

The commutation signals allow the drive to operate the motor at 'switch on' with only a small possible reduction in efficiency and torque in the motor. The best way to explain this is to use an example where an encoder is connected to a motor with 6 poles.

On power up the drive would look at the $\mathrm{S} 1, \mathrm{~S} 2$ and S 3 signals to determine where the stator is relative to the rotor or magnetic plate. This would give a known position that is within 60° electrical of an electrical cycle (20° mechanical). During this initial period, the drive assumes that it is in the middle of this 60° unknown region. So the worse case error of this is 30° electrical (10° mechanical), which equates to a drop of 13.4% in the rated torque when 100% current is delivered into the motor winding. When the drive is commanded to move the motor position, the stator is energized causing the plate or rotor to move. While the rotor or plate is moving, the drive detects that a signal switch (edge detection) has occurred on one of the commutation channels (S1, S2 or S3). At this point the drive knows exactly where it is in the electrical cycle and adjusts the field orientation to compensate for the error. At this point the drive switches over to using only the incremental signals for commutation and the commutation channels are no longer used.

Electronic nameplate

Available on some feedback devices the electronic nameplate provides the facility to electronically store information about the motor and feedback device. This information can then automatically be used to configure the drive for operation.

Environment The environment is the external conditions that physically surround the Feedback device. The main factors that affect the feedback device are temperature and mechanical shock and vibration.

Motors are designed to allow the feedback devices to be within their operational temperature limits. Generally it is assumed that there is free air movement around the motor. If the motor is positioned where there is little or no airflow or it is connected to a heat source such as a gearbox. This can cause the air temperature around the feedback device to be operating outside its recommended operating temperature and can lead to problems.
Mechanical shock and vibration tends to be transmitted from the load, through the motor shaft and into the feedback device. This should be considered when the motor and feedback device are being specified for the application.

Position	The defined position is the location in a coordinate system which is usually in two or more dimensions.

For a rotary feedback device this is defined as the location within one revolution. If it is a multi-turn device it is the location within one revolution plus the location within a number of rotations.

For a linear feedback device this is defined as the distance from a known point.
Resolution The resolution of a feedback device is the smallest change in position or angle that it can detect in the quantity that it is measuring.
Feedback resolution of the system is a function of the type of feedback device used and drive receiving the information.
Generally, as the resolution of the feedback device increases the level of control that can be used in the servo system increases.
As with accuracy, as the resolution of the device increases the cost increases.

Resolver A passive wound device consisting of a stator and rotor elements excited from an external source, such as an SM-Resolver, the resolver produces two output signals that correspond to the sine and cosine angle of the motor shaft. This is a robust absolute device of low accuracy, capable of withstanding high temperature and high levels of vibration. Positional information is absolute within one turn - i.e. position is not lost when the drive is powered down.

Incremental An electronic device using an optical disc. The position is encoder determined by counting steps or pulses. Two sequences of pulses in quadrature are used so the direction sensing may be determined and $4 \times$ (pulses per rev) may be used for resolution in the drive. A marker pulse occurs once per revolution and is used to zero the position count. The encoder also provides commutation signals, which are required to determine the absolute position during the motor phasing test. This device is available in 4096, 2048 and 1024 ppr version. Positional information is non absolute - i.e. position is lost when the drive is powered down.

SinCos/ Absolute Encoders	Types available are: Optical or Inductive - which can be single or multi-turn.
1) Optical	An electronic device using an optical disc. An absolute encoder with high resolution that employs a combination of absolute information, transmitted via a serial link, and sine/cosine signals with incremental techniques.

2) Inductive	An electronic device using inductively coupled PCBs. An absolute encoder with medium resolution that employs a combination of absolute information, transmitted via a serial link, and sine/cosine signals with incremental techniques. This encoder can be operated with the drive
	using either sine/consine or absolute (serial) values only.
Positional information is absolute within 4096 turns	
- i.e. position is not lost when the drive is powered down.	

Multi-turn	As previous but with extra gear wheels included so that the output is unique for each shaft position and the encoder has the additional ability to count complete turns of the motor shaft up to 4096 revolutions.
Serial	Serial communication is available on some feedback devices. It is the process of sending data one bit at one time, sequentially, over a communication channel. The specification normally used to define this method of communication is the EIA485 specification. These can be synchronous, which means that they operate with additional clock channels. The main advantage of synchronous data transmission is that it can operate at high speed. A disadvantage is that if the receiver goes out of synchronisation it can take time for it to resyncronise and data may be lost. Note that not all serial interfaces use the clock channels.
Serial interface communication allows data to be sent and received from the feedback device. In addition to the position and speed data other information can be sent such as multi-turn count, absolute position and diagnostic information.	
SynchronousIf something is synchronous it means that events are coordinated in time. For serial interfaces this means that clock channels are used.	

| Asynchronous If something is asynchronous it means that events are not |
| :--- | :--- |
| coordinated in time. For serial interfaces this means that |
| clock channels are not used. |

4.14 Brake specification

Unimotor fm may be ordered with an internal rear mounted spring applied parking brake. The brake works on a fail safe principle: the brake is active when the supply voltage is switched off and the brake is released when the supply voltage is switched on.

The standard parking brake, noted by the 1 code in the part number, consists of spring applied plates operating onto a fibre plate. The high energy parking brake, noted by the 5 code in the part number, consists of spring applied plates operating onto a fibre plate that is mounted onto an aluminum disc. This arrangement allows for more energy to be dissipated while braking, as the heat is transferred into the aluminium disc, which in turn gives a high braking torque.

If a motor is fitted with a fail safe brake, take care not to expose the motor shaft to excessive torsional shocks or resonances when the brake is engaged or disengaged. Doing so can damage the brake.

4.14.1 Unimotor fm

Motor frame	Supply volts	Input power	Standard brake (1)	High energy brake (5)	Release time	Moment of inertia	Backlash
Size	Vdc	Watts	Nm	Nm	ms nom	kgcm 2 *	Degrees** $^{\text {Nm }}$
$\mathbf{0 5 5}$	24	6.3	1.8	$\mathrm{~N} / \mathrm{A}$	22	0.03	0.75
$\mathbf{0 7 5}$	24	6.3	2	2.2	22	0.07	1.03
$\mathbf{0 9 5}$	24	16	11	12.2	60	0.39	0.94
$\mathbf{1 1 5}$	24	16	11	12.2	60	0.44	0.56
$\mathbf{1 4 2}$	24	19.5	18	22	75	0.54	0.56
$\mathbf{1 9 0}$ (A-D)	24	25	38	42	95	3.07	0.77
$\mathbf{1 9 0}$ (E-H)	24	25	60	67	120	4.95	0.77
$\mathbf{2 5 0}$	24	62	$\mathrm{~N} / \mathrm{A}$	135	252	16.37	0.77

*Note $1 \mathrm{kgcm}^{2}=1 \times 10-4 \mathrm{kgm}^{2}$ **Backlash figure will increase with time
\rightarrow The brakes are intended for parking duty and are not for dynamic or safety use
\rightarrow Refer to your Drive Centre or Distributor if your application requires dynamic braking in emergency conditions
\rightarrow To provide protection to the brake control circuit it is recommended that a diode is connected across the output terminals of the solid state or relay contacts devices
\rightarrow Larger torque brakes are available as an option. Contact your Drive Centre or Distributor for details
\rightarrow Figures are shown at $20^{\circ} \mathrm{C}$ brake temperature. Apply the derate factor of 0.7 to the standard brake torque figures if motor temperature is above $100^{\circ} \mathrm{C}$. A derate factor of 0.9 applies to the high energy brake if motor temperature is above $100^{\circ} \mathrm{C}$
\rightarrow The brake will engage when power is removed

Note.
Shunting the brake with an external diode to avoid switching peaks increases the release time considerably. This is usually required to protect solid state switches, or to reduce arcing at the brake relay contacts (Diode 1N4001 recommended)

SAFETY NOTE

The Fail-Safe Brake is for use as a holding brake with the motor shaft stationary.

Do NOT use it as a dynamic brake, except for emergencies such as a mains supply failure.

4.14.2 Unimotor hd

Motor frame	Supply volts	Input power	Static torque		Release time	Moment of inertia	Backlash
			Standard parking brake (01)	High energy parking brake (05)			
Size	Vdc	Watts	Nm	Nm	ms nom kgcm^{2} *		Degrees**
055	24	6.3	1.8	N/A	22	0.03	0.73
067	24	10.2	N/A	4	<50	0.073	0.75
089	24	23.35	N/A	10	<50	0.115	0.75
115	24	19.5	N/A	25	120	0.327	0.75
142	24	25	N/A	42	95	2.54	0.77
190 C-D	24	25	N/A	67	120	4.57	0.77
190 F	24	54.5	N/A	100	TBD	7.72	0.75

*Note $1 \mathrm{kgcm}^{2}=1 \times 10-4 \mathrm{kgm}^{2}$ * * Backlash figure will increase with time
\rightarrow The brakes are intended for parking duty and are not for dynamic or safety use
\rightarrow The brake will engage when power is removed.
\rightarrow Refer to your Drive Centre or Distributor if your application requires dynamic braking in emergency conditions.
\rightarrow To provide protection to the brake control circuit it is recommended that a diode is connected across the output terminals of the solid state or relay contacts devices.
\rightarrow Figures are shown at 20° ambient. Apply a de rate factor of 0.7 to the standard brake torque figures if motor temperature is above $100^{\circ} \mathrm{C}$

4.15 Radial load

When selecting a motor some consideration must be made to the loading that the required application will put on the motor shaft. All shaft loads are transferred to the motor's bearing system, so a poorly selected motor could result in premature bearing failure.

Maximum axial and radial load

The following graphs show the Unimotor in terms of bearing strength. It has to be noted that the graphs are based on theoretical calculation, and that the bearing life of the motor is affected by the following:
\rightarrow Speed
\rightarrow Radial load applied to the bearings
\rightarrow Axial load applied to the bearings
\rightarrow Shock and vibration (external shock/vibration applied to the motor)
\rightarrow Bearing temperature
\rightarrow Bearing cleanliness
\rightarrow Motor mounting to the application

The loads in the following graphs have been calculated using ISO 281 calculation L10(h). The loads and speeds used are considered to be constant throughout the life of the bearing.

The following factors have been taken into consideration when calculating the loads:
\rightarrow 90\% reliability
\rightarrow Radial load applied on the output shaft away from the shoulder and constant. The distance can be read on the different graphs
\rightarrow Axial load going toward the motor and constant
\rightarrow Load factor of 1 : no vibration applied to the motor
\rightarrow Temperature of the bearing: $100^{\circ} \mathrm{C}$ max
\rightarrow Grease clean

4.15 Radial load Unimotor fm

Radial load vs. axial load on 75 U 2 (and 75E2)

$75 U 2 L_{10(h)}$ Bearing life for 20,000 hours (reliability 90%, load factor of 1). Do not exceed a maximum axial load of 900 N

EMERSON

Industrial Automation

Radial load vs. axial load on 95U2 (and 95E2)

$95 \mathrm{U} 2 \mathrm{~L}_{10(h)}$ Bearing life for 20,000 hours (reliability 90%, load factor of 1). Do not exceed a maximum axial load of 850 N

Radial load vs. axial load on 115U2 (and 115E2)

$115 \mathrm{U}^{2} \mathrm{~L}_{10(\mathrm{~h})}$ Bearing life for 20,000 hours (reliability 90%, load factor of 1). Do not exceed a maximum axial load of 950 N

Radial load vs. axial load on 142 U 2 (and 142E2)

$142 \mathrm{U} 2 \mathrm{~L}_{10(h)}$ Bearing life for 20,000 hours (reliability 90%, load factor of 1). Do not exceed a maximum axial load of 950 N

Radial load vs. axial load on 190 U (and 190E2)

190U2 $\mathrm{L}_{10(\mathrm{~h})}$ Bearing life for 20,000 hours (reliability 90%, load factor of 1). Do not exceed a maximum axial load of 900 N

EMERSON

Industrial Automation

Radial load vs. axial load on 250 U 2 (and 250E2)

250U2 $L_{10(h)}$ Bearing life for 20,000 hours (reliability 90%, load factor of 1). Do not exceed a maximum axial load of 1450 N
4.15.2 Unimotor hd

Radial load vs. axial load on 067UD (and 067ED)

067UD L ${ }_{10(h)}$ Bearing life for 20,000 hours (reliability 90%, load factor of 1). Do not exceed a maximum axial load of 650 N

Radial load vs. axial load on 089UD (and 089ED)

089UD L ${ }_{10(h)}$ Bearing life for 20,000 hours (reliability 90%, load factor of 1). Do not exceed a maximum axial load of 1000 N

Radial load vs. axial load on 115UD (and 115ED)

115 UD L $_{10(h)}$ Bearing life for 20,000 hours (reliability 90%, load factor of 1). Do not exceed a maximum axial load of 1200 N

It can be seen on some graphs that the curve line becomes horizontal.
This is due to the axial pushing load on the shaft (see Shaft push back
load). This limit should not be exceeded in case the shaft moves.

EMERSON

Industrial Automation

Radial load vs. axial load on 142UD (and 142ED)

$\operatorname{142UD~}_{10(h)}$ Bearing life for 20,000 hours (reliability 90%, load factor of 1). Do not exceed a maximum axial load of 950 N

Radial load vs. axial load on 190UD (and 190ED)

(2)

1500 rpm
3 - 2000 rpm

190UD $\mathrm{L}_{10(n)}$ Bearing life for 20,000 hours (reliability 90%, load factor of 1). Do not exceed a maximum axial load of 900 N

4.16 Bearing life and output shaft strength

The maximum output shaft that can be machined on the motor is determined by the inner diameter of the bearings. The bearing sizes on Unimotor fm motors have increased in comparison with the Unimotor UMs and this allows a larger output shaft to be machined. Larger output shafts mean stronger output shafts.

The following graphs show this improvement.

Maximum Bearing life

It has to be noted that the graphs are based on theoretical calculations and the motor is affected by the following.

\rightarrow Speed

\rightarrow Radial load applied to the bearings
\rightarrow Axial load applied to the bearings
\rightarrow Shock and vibration (external shock/vibration applied to the motor)
\rightarrow Bearing temperature
\rightarrow Bearing cleanliness
\rightarrow Motor mounting to the application

The loads in the following graphs have been theoretically calculated. The following factors were taken into consideration:
$\rightarrow 90 \%$ reliability (for bearing life only)
\rightarrow Radial load applied on the output shaft away from the shoulder and constant. The distance can be read on the different graphs.
\rightarrow Axial loads going towards the motor and constant (Axial load $=0 \mathrm{Nm}$)
\rightarrow Load factor of 1: no vibration applied to the motor (for bearing life only).
\rightarrow Temperature of the bearing: $100^{\circ} \mathrm{C}$ max.
\rightarrow Grease clean (for bearing life only).
\rightarrow Torque alternating (for shaft strength only).

EMERSON

Industrial Automation

4.16.1 Unimotor fm

Bearing life and output shaft strength on 75U2

$75 U 2 \mathrm{~L}_{10(\mathrm{~h})}$ Bearing life for 20,000 hours (reliability 90\%, load factor of 1)

Bearing life and output shaft strength on 95U2

95U2 $\mathrm{L}_{10(\mathrm{~h})}$ Bearing life for 20,000 hours (reliability 90%, load factor of 1)

Bearing life and output shaft strength on 115U2

RMS bearing speed

$115 \mathrm{U} 2 \mathrm{~L}_{10(\mathrm{~h})}$ Bearing life for 20,000 hours (reliability 90%, load factor of 1)
Bearing life and output shaft strength on 142U2

$142 \mathrm{U} 2 \mathrm{~L}_{10(\mathrm{~h})}$ Bearing life for 20,000 hours (reliability 90%, load factor of 1)

EMERSON

Industrial Automation

Bearing life and output shaft strength on 190U2

Max shaft strength
(3) -28 mm output
4) ——32mm output
(5) -38 mm output
(6) -42 mm output
$190 \mathrm{U} \mathrm{L}_{10(\mathrm{~h})}$ Bearing life for 20,000 hours (reliability 90%, load factor of 1)
Bearing life and output shaft strength on 250U2

Max shaft strength- 42 mm output
(6) -48 mm output

250U2 $\mathrm{L}_{10(\mathrm{~h})}$ Bearing life for 20,000 hours (reliability 90%, load factor of 1)

4.16.2 Unimotor hd

Bearing life and output shaft strength on 067UD

067UD L ${ }_{10(h)}$ Bearing life for 20,000 hours (reliability 90%, load factor of 1).

Bearing life and output shaft strength on 089UD

089UD L ${ }_{10(h)}$ Bearing life for 20,000 hours (reliability 90%, load factor of 1).

EMERSON

Industrial Automation

Bearing life and output shaft strength on 115UD

Radial load vs. axial load on 142UD

$11542 \mathrm{~L}_{10(h)}$ Bearing life for 20,000 hours (reliability 90%, load factor of 1).

Radial load vs. axial load on 190UD

190UD $L_{10(h)}$ Bearing life for 20,000 hours (reliability 90%, load factor of 1).
$115 U D ~ L ~_{10(\text { (h) }}$ Bearing life for 20,000 hours (reliability 90%, load factor of 1)

Shaft push back load

The minimum pushing load needed to move the rotor relative to the bearings.
The table (right) shows the minimum push back force on Unimotor.

Motor	Push back force (N)
	Unimotor FM
075	
095	
115	
142	
190	
250	
	Unimotor HD
067	
089	
115	

5 Motor and signal cables

Cables are an important part of a servo system installation. Not only must the noise immunity and integrity of the cabling and connectors be correct, but also SAFETY and EMC regulations must be complied with to ensure successful, reliable and fail safe operation. One of the most frequent problems experienced by motion systems engineers is incorrect connections of the motor to the drive.

Control Techniques Dynamics ready made cables mean system installers can avoid the intricate, time consuming assembly normally associated with connecting servo systems. Installation and set-up time are greatly reduced - there is no fiddling with wire connections and crimp tools, and no fault finding.

The cables are made to order in lengths from 1 m to $50 \mathrm{~m} / 100 \mathrm{~m}$.

Cable range for motor-drive combination

\rightarrow Unimotor fm U2 /U4 and Unimotor hd UD to Unidrive SP
\rightarrow Unimotor fm E2 and Unimotor hd ED to Unidrive SP low voltage and Epsilon EP
\rightarrow Unimotor fm and Unimotor hd to Digitax ST / Unidrive SP size 0

Power cable variants

\rightarrow Phase conductors 1.0mm² (10A) to $16 \mathrm{~mm}^{2}$ (70A)
\rightarrow With and without brake wire pairs
\rightarrow Motor end connector
\rightarrow Motor end Ferrules for Hybrid box
\rightarrow Drive end is tailored to suit the drive and can be ferrules or ring terminals

Cable features

\rightarrow For dynamic performance PUR outer sheath for oil resistance and dynamic performance. The PUR jacket has excellent abrasion, chemical and ozone resistance, low smoke, low halogen flame retardant construction suitable for internal and external industrial environments.
\rightarrow OFS outer sheath for oil resistance and static performance.
\rightarrow Complies with DESINA coding - Orange for power, Green for signal
\rightarrow Power cable and plugs UL recognised
\rightarrow Optimum noise immunity
\rightarrow Encoder cable has low volt drop for long cable lengths and separately screened thermistor wires.
\rightarrow No need for crimp and insertion / removal tools
\rightarrow Production build gives quality and price benefits
\rightarrow Power cables with and without brake wires
\rightarrow Cable assembly type identification label
\rightarrow Brake wires are separately shielded within the power cable

Power - PUR Basic cable types

Phase \& conductor size (current rating Cenlec EN60204.1)	Power plug size	Current rating	Overall cable diameter (mm)	
			No brake	Braked
$\mathrm{G}-1.5 \mathrm{~mm}^{2}$ (16A)	Size 1	30A sockets	8.5	10.8
A - $2.5 \mathrm{~mm}^{2}$ (22A)			10.0	12.6
B - $4.0 \mathrm{~mm}^{2}$ (30A)	Size 1 Size 1.5	30A sockets 53A sockets	11.7	14.1
C - $6.0 \mathrm{~mm}^{2}$ (39A)	Size 1.5	70A sockets	17.4	17.4
D - 10.0mm ${ }^{2}$ (53A)			20.4	20.4
$\mathrm{E}-16.0 \mathrm{~mm}^{2}$ (70A)			23.4	23.4

Note

\rightarrow Minimum bend radius $=10 x$ dia long travel, $7.5 x$ dia unsupported chain. Bending life 10,000,000 cycles
\rightarrow Maximum accelaration $=20 \mathrm{~m} / \mathrm{s}^{2}$
\rightarrow Temperature rating $-10^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$
Power - OFS basic cable types

 conductor size (current rating Cenlec EN60204.1)	Power plug size	Current rating	Overall cable diameter (mm)	
H-1.0 mm² (10A)	Size 1	30A sockets	8.2	No brake

Note

\rightarrow Minimum bend radius $=15 x$ dia long travel
\rightarrow Maimum accelaration $=6 \mathrm{~m} / \mathrm{s}^{2}$
\rightarrow Temperature rating $-10^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
Signal - PUR basic cable types

Cable type	Cable code	Overall cable diameter (mm)
Encoder $/$ SinCos Heidenhain	SIBA/SSBE	10.9
Resolver $/$ SinCos SICK Encoder	SRBA/SSBA	9.6

Note
\rightarrow Minimum bend radius $=10 x$ dia long travel $7.5 x$ dia short unsupported.
Bending life 10,000,000 cycles
\rightarrow Maximum accelaration SRBA/SSBA $=20 \mathrm{~m} / \mathrm{s}^{2}$
$\mathrm{SIBA} / \mathrm{SIBL}=10 \mathrm{~m} / \mathrm{s}^{2}$
\rightarrow Temperature rating $-10^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$
Signal - OFS basic cable types

Cable type	Cable code	Overall cable diameter (mm)
Encoder	SICA	
Resolver / SinCos SICK	SRCA/SSCA	
Note		
\rightarrow Minimum bend radius $=15 x$ dia long travel		
\rightarrow Maimum accelaration $=6 \mathrm{~m} / \mathrm{s}^{2}$		
\rightarrow Temperature rating $-10^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$		

Cable information

PS	B	A		F	A	015
Cable type	Jacket	Phase \& ground: conductor size		Connection details drive end	Connection details motor end	Cable length
PS $=$ Power (Standard)	$B=P U R$	$\mathrm{H}^{* *}=1.0 \mathrm{~mm}^{2}$	10A	C = 6 way power extension connector	A = 055-142 Unimotor fix	Min $=001$ (1m)
PB $=$ Power (with brake)*	$\mathrm{C}=\mathrm{OFS}$	$\mathrm{G}=1.5 \mathrm{~mm}^{2}$	16A	F = Unidrive $\mathscr{C l}$ (size 1-2) Ferrules	075-115 Unimotor 䚪 fan blown 055-115 Unimotor hd	$M a x=100(100 m)$
		$\mathrm{A}=2.5 \mathrm{~mm}^{2}$	22A	G = Unidrive $\mathbb{C} P$ (size 3) Ring terminals	size 1 power connector	
		$B=4.0 \mathrm{~mm}^{2}$	30A	H = Digitax ST and SP0 Ferrules	= 190-250 Unimotor filip	
		$\mathrm{C}^{*}=6.0 \mathrm{~mm}^{2}$	39A	J = Unidrive © PD (size 4) Ring terminals	142-250 Unimotor finip fan blown size 1.5 power connector	
* Ring terminals for Drive studs only		$\mathrm{D}^{*}=10.0 \mathrm{~mm}^{2}$	53A	K = Epsilon EP Ferrules		
** Only available in OFS		$\mathrm{E}^{*}=16.0 \mathrm{~mm}^{2}$	70A	$\mathrm{X}=$ Cut end	$\mathrm{J}=250$ hybrid ferrules	
					X = Cut end	

Cable type	PS for motor without brakes, PB for motors with brake.			
Jacket	B is for the PUR sheath and is the Dynamic cable selection. C is for the OFS sheath and is the Static cable selection.		Conductor size	Select the conductor size according to the motors STALL CURRENT. Cables of $6 \mathrm{~mm}^{2}$ and above will be be fitted with ring terminals only. Ratings are for individual cables (not lashed together) in free air temperature up to $40^{\circ} \mathrm{C}$ - make allowances as appropriate.
:---	:---			
Connection detail drive end	Select the correct drive end connection for the drive in use.			
Connection detail motor end	Select the correct motor end connection for the motor in use.			
Length	Numbers represent the required cable length in metres.			

SI	B	A	A	A	015
Cable type	Jacket	Special options		Connection details motor end	Cable length*
SI = Incremental Encoder hyperboloid pins	$\mathrm{B}=\mathrm{PUR}$	A = Standard cable		A = Encoder 17 pin connector	Min $=001$ (1m)
SR = Resolver	$\mathrm{C}^{* *}=$ OFS	$\mathrm{E}=$ Twisted screened SS cable		$\mathrm{B}=$ Resolver 12 pin connector	Max $=100$ (100m)
SS $=$ Sin/Cos Encoder		$\mathrm{L}=8.5 \mathrm{~mm}$ dia SI cable		$\mathrm{C}=\mathrm{Sin} / \mathrm{Cos} 12$ pin connector (Hiperface)	
SE = Incremental Encoder split pins				$\mathrm{E}=17$ pin extension connector	
				F $=90^{\circ}$ Encoder 17 pin connector	
Connection details drive end				$\mathrm{G}=90^{\circ}$ Resolver 12 pin connector	
A = Digitax ST/Unidrive $\mathcal{C l} /$ Epsilon EP Encoder 15 pin connector				$\mathrm{H}=90^{\circ} \mathrm{Sin} / \mathrm{Cos} 12$ pin connector (Hiperface)	
$B=$ Resolver $/$ Sin/Cos Ferrules				$\mathrm{N}=\operatorname{Sin} / \operatorname{Cos} 17$ pin connector (EnDat)	
F = Epsilon Encoder 26 pin connector				$0=90^{\circ} \operatorname{Sin} / \operatorname{Cos} 17$ pin connector (EnDat)	
I = Extension connector male pins				$\mathrm{X}=$ Cut end	
H = Digitax ST/Unidrive ©D Sin/Cos 15 pin connector				*Max cable length: 50 m with the SIBA/SICA as standard, 100 m only if +5 V tolerance can be maintained. 10 m with the SIBL. Heidenhain EC/FC 20 m EB/FB 30m with the SSBA cable, EC/FC 20 m EB/FB 100 m with the SSBE cable.	
X = Cut end					
				** OFS only available on SI encoder cable	

Cable type	Choose the cable type to match the feedback device.
Jacket	B is for the PUR sheath and is the Dynamic cable selection. C is for the OFS sheath and is the Static cable selection.
Special options	A is for standard cable. L is for the low cost 8.5 mm incremental cable.
Connection detail drive end	Select the correct drive end connection for the drive in use.
Connection detail motor end	Select the correct motor end connection for the motor feedback device in use.
Length	Numbers represent the required cable length in metres.
	www.controltechniques.com

EMERSON
Industrial Automation

5.2 Motor connector details

Power plug

Signal plug

	Incremental encoder (CR, MR, KR, CA, MA, KA , CR)	Heidenhain Absolute Encoders (EM, FM, EC, FC, EB, FB, LC, NC, LM, NM)	Resolver (AR, AE)	$\begin{gathered} \text { SICK } \operatorname{Sin} / \operatorname{Cos} \\ \text { encoders (TL, UL, RA, SA) } \end{gathered}$
Pin	Function	Function	Function	Function
1	Thermistor	Thermistor	Excitation High	REF Cos
2	Thermistor	Thermistor	Excitation Low	+ Data
3		Screen (Optical encoder only)	Cos High	- Data
4	S1		Cos Low	+ Cos
5	S1 Inverse		Sin High	+ Sin
6	S2		Sin Low	REF Sin
7	S2 Inverse		Thermistor	Thermistor
8	S3	+ Clock	Thermistor	Thermistor
9	S3 Inverse	- Clock		Screen
10	Channel A	+ Cos		0 Volts
11	Index	+ Data		-
12	Index Inverse	- Data		+ V
13	Channel A Inverse	- Cos		
14	Channel B	+ Sin		
15	Channel B Inverse	- Sin		
16	+V	+ V		
17	0 Volts	0 Volts		
Body	Screen	Screen		Screen

5.3 Maximum cable length

Due to the volt drop down the power lines within the feedback cable, each feedback device has a maximum length restriction placed upon it.

Maximum recommended length

Cable types	Maximum cable length					
	Resolver	Renco	SICK	Heidenhain		
SIBA		CR	CA/MA/KA			
Incremental		TBA	50m			
SRBA	AE AR					
Resolver	100m 100m					
SSBA			RA/SA	EB/FB	EC/FC	EM/FM
SinCos			100m	30m	20m	TBA
SSBE			RA/SA	EB/FB	EC/FC	EM/FM
SinCos			100m	100m	20m	TBA
SIBA		CR	CA/MA/KA			
Incremental		TBA	10m			

With EnDat 2.1 communication the clock frequency is variable from 100 kHz to 2 MHz . As long cable runs and high clock frequencies increase the signal run time, due to the propagation delay within the cable, the drive centre must ensure that the correct cable length is used.

EMERSON

Industrial Automation

5.4 Power cable range

Power cable with brake

Power cable without brake

Signal cable Incremental Encoders SIBAAAxxx or SIBLAAxxx

Incremental cable:

SIBAxxxx, dia 10.9 mm , maximum length 50 m
SIBLxxxx, dia 8.5 mm , maximum length 10 m

15-way drive connections		17-way motor encoder plug	
Pin	Colour	Pin	Function
Body	White	1	Thermistor 0V
15	Brown	2	Thermistor Signal
-	Orange or black	3	Screen
7	Green	4	S1
8	Yellow	5	S1 Inverse
9	Grey	6	S2
10	Pink	7	S2 Inverse
11	Black	8	S3
12	Purple	9	S3 Inverse
1	Grey/Pink Band	10	Channel A
5	White/Green Band	11	Index
6	Brown/Green Band	12	Index Inverse
2	Red/Blue Band	13	Channel A Inverse
3	$\operatorname{Red}\left(0.34 \mathrm{~mm}^{2}\right)$	14	Channel B
4	Blue($0.34 \mathrm{~mm}^{2}$)	15	Channel B Inverse
13	$\operatorname{Red}\left(1.0 \mathrm{~mm}^{2}\right)$	16	+Volts
14	Blue($1.0 \mathrm{~mm}^{2}$) + White	17	OVolts + Thermistor
Body	Screen	Body	Screen

Signal cable SinCos SSBAHCxxx for SICK Encoders

SinCos cable: SSBAxxxxx, dia 9.6mm, maximum length 100m

15-way drive connections		12-way motor encoder plug	
Pin	Colour	Pin	Function
2	Red	1	REF Cos
5	Blue	2	+ Data
6	Violet	3	- Data
1	Orange	4	+ Cos
3	Brown	5	+ Sin
4	Black	6	REF Sin
14	Yellow	7	Thermistor
15	Green	8	Thermistor
Body	Screen	9	Screen
14	Blue/White(0.5mm²)	10	0 Volts
	-	11	-
13	Red/White(0.5mm²)	12	+ V
Body	Screen	Body	Screen

Signal cable SinCos SSBAHNxxx for Heidenhain Encoders

SinCos cable: SSBAxxxxx, dia 9.6 mm , maximum length $20 \mathrm{~m} \mathrm{EC/FC}$, maximum length30m EB/FB

15-way drive connections		17-way motor encoder plug	
Pin	Colour	Pin	Function
14	Yellow	1	Thermistor
15	Green	2	Thermistor
Body	Orange or Black	3	Internal cable screen
7		4	
8		5	
9		6	
10		7	
11	Yellow / White	8	+Clock
12	Black / White	9	-Clock
1	Orange	10	+Cos
5	Blue	11	+Data
6	Violet	12	-Data
2	Red	13	-Cos
3	Brown	14	+Sin
4	Black	15	-Sin
13	Red / White (0.5mm²)	16	+Volts
14	Blue / White ($0.5 \mathrm{~mm}{ }^{2}$)	17	0 Volts
Body	Screen	Body	Screen

Industrial Automation

Signal cable SinCos SSBEHCxxx for SICK Encoders

SinCos cable: SSBExxxxx, dia 10.9mm, maximum length 100m

15-way drive connections		12-way motor encoder plug	
Pin	Colour	Pin	Function
2	Red	1	REF Cos
5	Grey	2	+ Data
6	Pink	3	- Data
1	Blue	4	+ Cos
3	Purple	5	+ Sin
4	Black	6	REF Sin
14	White	7	Thermistor
15	Brown	8	Thermistor
Body	Screen	9	Screen
14	Blue ($1.0 \mathrm{~mm}^{2}$)	10	0 Volts
	-	11	-
13	$\operatorname{Red}\left(1.0 \mathrm{~mm}^{2}\right)$	12	+ V
Body	Screen	Body	Screen

Signal cable SinCos SSBEHNxxx for Heidenhain Encoders

SinCos cable: SSBExxxxx, dia 10.9 mm , maximum length 20 m EC/FC, maximum length 100 m EB/FB

15-way drive connections		17-way motor encoder plug	
Pin	Colour	Pin	Function
14	White	1	Thermistor
15	Brown	2	Thermistor
Body	Orange or Black	3	Internal cable screen
7		4	
8		5	
9		6	
10		7	
11	Black	8	+Clock
12	Purple	9	-Clock
1	Grey / Pink	10	+Cos
5	White / Green	11	+Data
6	Brown / Green	12	-Data
2	Red / Blue	13	-Cos
3	$\operatorname{Red}\left(0.34 \mathrm{~mm}^{2}\right)$	14	+ Sin
4	Blue ($0.34 \mathrm{~mm}^{2}$)	15	-Sin
13	Red ($1.0 \mathrm{~mm}^{2}$)	16	+Volts
14	Blue ($1.0 \mathrm{~mm}^{2}$)	17	0 Volts
Body	Screen	Body	Screen

Industrial Automation

Signal cable Resolver SRBxBBxxx

Resolver cable: SRBAxxxxx, dia 9.6mm, maximum length 100m
Drive connections

Other options of motor or drive connections are available. Below are some examples, or contact Control Techniques Dynamics Limited for details.

Right angle motor connectors

Cut end cables

UM terminal/hybrid box cables

5.5 Selecting connector kits

Control Techniques Dynamics can supply a full range of connectors for the Unimotor range. The tables below show the connector kits and spare sockets that are available.

Power connectors		
Single connector type	CTD connector part no	Spare sockets
Size 1 power (30A)	$\mathrm{IM} / 0039 / \mathrm{KI}$	$\mathrm{IM} / 0047 / \mathrm{KI}$
Size 1.5 power (4mm² cable :53A)	$\mathrm{IM} / 0053 / \mathrm{KI}$	$\mathrm{IM} / 0056 / \mathrm{KI}$
Size 1.5 power (>6mm² cable : 70A)	$\mathrm{IM} / 0054 / \mathrm{KI}$	$\mathrm{IM} / 0057 / \mathrm{KI}$
Brake	-	$\mathrm{IM} / 0048 / \mathrm{KI}$

Signal connectors		
Single connector type	CTD connector part no	Spare sockets
Encoder/SinCos (Heidenhain)	$\mathrm{IM} / 0022 / \mathrm{KI}$	$\mathrm{IM} / 0049 / \mathrm{KI}$
Resolver/SinCos (SICK)	$\mathrm{IM} / 0023 / \mathrm{KI}$	$\mathrm{IM} / 0049 / \mathrm{KI}$
Resolver/SinCos(SICK) 90	$\mathrm{IM} / 0033 \mathrm{KI} / 01$	$\mathrm{IM} / 0049 / \mathrm{KI}$
Encoder/SinCos(Heidenhain) 90	$\mathrm{IM} / 0033 / \mathrm{KI} / 02$	$\mathrm{IM} / 0049 / \mathrm{KI}$
Power/signal type		
Size 1 power + Encoder/SinCos (Heidenhain)	CTD part no	
Size 1 power + Resolver/SinCos (SICK)		$\mathrm{IM} / 0012 / \mathrm{KI}$

5.6 Unimotor signal and power extension cables

These cables are designed so that existing cables can be extended.

Signal cable

The signal extension cable uses a male contact version of the signal connector (Male plug) at the "Drive end" with the standard female contact version of the signal connector (Female socket) at the "Motor End".

Examples of the order codes for these cables are shown below:-
\rightarrow SIBAIA003 (Incremental encoders)
\rightarrow SRBAIB003 (Resolver)
\rightarrow SSBAIC003 (SICK SinCos encoders)
\rightarrow SSBAIN003 (Heidenhain Absolute encoders)

6 way Power cables

The Power extension cable has a male contact version of the power connector (Male plug) at the "Drive end"), with the standard female contact version of the power connector (Female plug) at the "Motor end"

Examples of the order codes for these cables are shown below:-

```
 PSBACA003 (Unimotor size 055 to 142)
-> PSBCCB003 (Unimotor size 190 to 250)
```


6 way Power cables

The Flange kits must be ordered separately under the following part numbers

$$
\begin{array}{lll}
\rightarrow \text { Power size } 1 \text { Flange kit part number } & 1000301826 \\
\rightarrow \text { Signal Flange kit part number } & 1000301825
\end{array}
$$

See below for example of power flange.

5.7 DS/MS conversion cables

Conversion cables will enable a Unimotor to be installed in an existing DS/MS application.

These cables are available in power (braked), power (un-braked) and signal (resolver). For part numbers see the table below.

The conversion cables will be a fixed length of 400 mm and will not require the cable length as part of the order code.

The conductor size is fixed at 1.5 mm for the $75-95$ motors and 2.5 mm for the 115-142 motors.

They are only available in the DESINA colours of Orange for power and Green for signal.

Below is a picture of the new conversion cables, power braked at the top then power un-braked then signal.

DutymAx DS/MS to Unimotor conversions

The DutymAx DS/MS range of motors was made obsolete during 2007 and to allow customers to swap out these motors the following information has been produced.

The old DigitAx and MaxAx drives and the Undrive classic/Unidrive SP drive have a different notation for the U and V power terminals which means that motors have to be wired in a certain way for a forward rotation on each drive.

The DutymAx DS motors were wired and setup for operation with the old DigitAx drive and the DutymAx MS motors were wired and setup for operation with the MaxAx drive.

The Unimotor UM, fm and hd motors are wired and setup for operation with the Unidrive classic and Unidrive SP drive.

DutymAx DS motors to Unimotor classic (DM)

To allow a Unimotor classic to be used with the DigitAx drive use a Unimotor DM motor and conversion cables for CTD motor codes DM/SQH. The resolver offset position will be set correctly.

75DSA300CAAAA ----- 75DMA300CAAAA
DutymAx DS motors to Unimotor fm (U2)
To allow a Unimotor U2 to be used with the DigitAx drive use conversion cables for CTD motor codes U2, and then the Unimotor U2 must be re auto tuned to a new zero offset position before running.

75DSA300CAAAA ----- 075U2A300CAAEA075110
DutymAx MS motors to Unimotor classic (-SQH)
To allow a Unimotor classic to be used with the MaxAx drive use a Special Unimotor classic
-SQH and conversion cables for CTD motor codes DM/SQH. The resolver offset position will be set correctly.

75MSA300CAAAA ----- 75EZA300CAAAA-SQH

DutymAx MS motors to Unimotor fm

Currently there is no Unimotor fm offering.
Note:
If a customer requires a replacement motor fitted with Hybrid box, to work with a DigitAx/MaxAx drive, the Unimotor DM/SQH will continue to be the recommended offering from CTDynamics. Unimotor fm does not have a hybrid box option.

The Unimotor DM/SQH does have a $125^{\circ} \mathrm{C}$ rating so all resolver motor performances are rated the same as a DS/MS motor. Unimotor fm has a $100^{\circ} \mathrm{C}$ rating so the performance will be reduced.

All front flange mounting dimensions and shaft dimensions remain the same for $\mathrm{DS} / \mathrm{MS}$ and $\mathrm{DM} / \mathrm{SQH} / \mathrm{U} 2$ motors, but the motor length will vary.

Please check relevant brochure for details.

Conversion cables

(For conversion cable details see Tech Note CTD031101)

Function	CTD motor DS/MS	Conversion cables for CTD motor code DM/SQH	Conversion cables for CTD motor code U2
Resolver	$75-142$	SRBAZB	SRBAZB
Power UNBR	$75-95$	PSBGYA	PSBGYA-SOE
Power BRKD	$75-95$	PBBGYA	PBBGYA-SOE
Power UNBR	$115-142$	PSBAZA	PSBAZA-SOE
Power BRKD	$115-142$	PBBAZA	PBBAZA-SOE

6 Performance graphs

The torque speed graph depicts the limits of operation for a given motor. The limits of operation are shown for three categories.

Torque/speed graph

1. Continuous or rms torque zone

This area gives the effective continuous or rms torque available for repetitive torque sequences. Continuous or rms torque must be within this area otherwise the motor may overheat and cause the system to trip out.

2. Intermittent or peak torque zone

Above the continuous zone is the intermittent zone where the motor may be safely operated for short periods of time. Operation within the intermittent zone is permissible provided that the defined peak torque limit is not exceeded. On some frame sizes the peak torque factor of $3 x$ stall current only applies up to a certain percentage level of rms current before it starts to reduce.
Please refer to the Standard (2) peak torque section for details.
Maximum peak torque is the upper limit of the intermittent zone and must never be exceeded, to do so will damage the motor.

3. Maximum speed zone

To the right of the graph is a sloping line depicting the maximum motor speed when using a 200V/400V drive supply. The speed limit line is dependent upon the motor windings, and the voltage supplied to the drive. Operation within the maximum speed zone is permissible as long as the maximum speed limit is not exceeded. If the speed is increased beyond the limit shown, the motors sinusoidal waveform would have insufficient voltage and will clip and distort, causing inefficiency and higher temperature. If the distortion increases further, the drive may loose control of the motor and trip.

Plotting an operating point

To estimate whether a motor is the correct choice for a given system, it is necessary to calculate or measure the rms torque and the rms speed for a given system in its normal continual stop/start sequenced mode. These operating points may be plotted on the torque speed graph. As shown in the first graph below, if the rms speed and torque point lies well within the continuous zone, then the motor is suitable for the application. The second graph below shows the max speed has increased to 3900 rpm and this is now outside the safe area and another speed motor must be selected.

Max torque $=10 \mathrm{Nm}$: Max speed $=2900$ rms torque $=3 \mathrm{Nm}$: rms speed $=1500$

Max torque $=10 \mathrm{Nm}$: Max speed $=3900$ rms torque $=3 \mathrm{Nm}$: rms speed $=1500$

6.1 Unimotor fm

055U2A3000

Peak torque $(\mathrm{Nm})=2.8$
Stall torque (Nm) = 0.7
Rated torque (Nm) $=0.6$

055U2B3000

Peak torque $(\mathrm{Nm})=5.5 \quad$ Stall torque $(\mathrm{Nm})=1.4 \quad$ Rated torque $(\mathrm{Nm})=1.2$

055U2C3000

055U2A6000

Peak torque $(\mathrm{Nm})=2.8 \quad$ Stall torque $(\mathrm{Nm})=0.7 \quad$ Rated torque $(\mathrm{Nm})=0.5$

055U2B6000

Peak torque $(\mathrm{Nm})=5.5 \quad$ Stall torque $(\mathrm{Nm})=1.4 \quad$ Rated torque $(\mathrm{Nm})=0.9$

055U2C6000

Peak torque $(\mathrm{Nm})=8.3 \quad$ Stall torque $(\mathrm{Nm})=2.1 \quad$ Rated torque $(\mathrm{Nm})=1.4$

075U2A2000

Peak torque $(\mathrm{Nm})=3.6 \quad$ Stall torque $(\mathrm{Nm})=1.2 \quad$ Rated torque $(\mathrm{Nm})=1.1$

075U2B2000

Peak torque $(\mathrm{Nm})=6.6$

075U2A3000

Peak torque $(\mathrm{Nm})=11.7 \quad$ Stall torque $(\mathrm{Nm})=3.9 \quad$ Rated torque $(\mathrm{Nm})=3.8$

075U2C2000

Peak torque $(\mathrm{Nm})=9.3 \quad$ Stall torque $(\mathrm{Nm})=3.1 \quad$ Rated torque $(\mathrm{Nm})=3.0$

075U2D2000

Peak torque $(\mathrm{Nm})=3.6 \quad$ Stall torque $(\mathrm{Nm})=1.2 \quad$ Rated torque $(\mathrm{Nm})=1.1$

075U2B3000

Continuous zone Intermittent zone All graphs area $40^{\circ} \mathrm{C}$ ambient and 400 V drive supply

075U2C3000

Peak torque $(\mathrm{Nm})=9.3 \quad$ Stall torque $(\mathrm{Nm})=3.1 \quad$ Rated torque $(\mathrm{Nm})=2.8$

075U2A4000

Peak torque $(\mathrm{Nm})=3.6 \quad$ Stall torque $(\mathrm{Nm})=1.2 \quad$ Rated torque $(\mathrm{Nm})=1.0$

075U2B4000

075U2D3000

Peak torque $(\mathrm{Nm})=11.7 \quad$ Stall torque $(\mathrm{Nm})=3.9 \quad$ Rated torque $(\mathrm{Nm})=3.5$

075U2C4000

Peak torque $(\mathrm{Nm})=9.3 \quad$ Stall torque $(\mathrm{Nm})=3.1 \quad$ Rated torque $(\mathrm{Nm})=2.3$

075U2D4000

075U2A6000

Peak torque $(\mathrm{Nm})=3.6$
Stall torque (Nm) $=1.2$
Rated torque $(\mathrm{Nm})=0.9$

075U2B6000

Peak torque $(\mathrm{Nm})=6.6$
Stall torque $(\mathrm{Nm})=2.2$
Rated torque (Nm) $=1.6$

075U2C6000

Peak torque $(\mathrm{Nm})=9.3 \quad$ Stall torque $(\mathrm{Nm})=3.1 \quad$ Rated torque $(\mathrm{Nm})=2.1$

075U2D6000

Peak torque $(\mathrm{Nm})=11.7 \quad$ Stall torque $(\mathrm{Nm})=3.9 \quad$ Rated torque $(\mathrm{Nm})=2.6$

095U2B2000

Peak torque $(\mathrm{Nm})=12.9 \quad$ Stall torque $(\mathrm{Nm})=4.3 \quad$ Rated torque $(\mathrm{Nm})=4.0$

095U2D2000

Peak torque $(\mathrm{Nm})=22.5 \quad$ Stall torque $(\mathrm{Nm})=7.5 \quad$ Rated torque $(\mathrm{Nm})=6.9$

095U2E2000

Peak torque $(\mathrm{Nm})=27.0 \quad$ Stall torque $(\mathrm{Nm})=9.0 \quad$ Rated torque $(\mathrm{Nm})=8.2$

095U2C2000

Peak torque $(\mathrm{Nm})=17.7 \quad$ Stall torque $(\mathrm{Nm})=5.9 \quad$ Rated torque $(\mathrm{Nm})=5.5$

095U2A3000

Peak torque $(\mathrm{Nm})=6.9$
Stall torque (Nm) = 2.3
Rated torque $(\mathrm{Nm})=2.0$

095U2B3000

Peak torque $(\mathrm{Nm})=12.9 \quad$ Stall torque $(\mathrm{Nm})=4.3 \quad$ Rated torque $(\mathrm{Nm})=3.9$

095U2C3000

Peak torque $(\mathrm{Nm})=17.7 \quad$ Stall torque $(\mathrm{Nm})=5.9 \quad$ Rated torque $(\mathrm{Nm})=5.4$

095U2D3000

Peak torque $(\mathrm{Nm})=\mathbf{2 2 . 5} \quad$ Stall torque $(\mathrm{Nm})=7.5 \quad$ Rated torque $(\mathrm{Nm})=6.8$

095U2E3000

Peak torque $(\mathrm{Nm})=27.0 \quad$ Stall torque $(\mathrm{Nm})=9.0 \quad$ Rated torque $(\mathrm{Nm})=8.1$

Peak torque $(\mathrm{Nm})=6.9 \quad$ Stall torque $(\mathrm{Nm})=2.3 \quad$ Rated torque $(\mathrm{Nm})=1.8$

095U2B4000

Peak torque $(\mathrm{Nm})=12.9 \quad$ Stall torque $(\mathrm{Nm})=4.3 \quad$ Rated torque $(\mathrm{Nm})=3.0$

095U2D4000

Peak torque $(\mathrm{Nm})=22.5 \quad$ Stall torque $(\mathrm{Nm})=7.5 \quad$ Rated torque $(\mathrm{Nm})=4.9$

095U2E4000

Peak torque $(\mathrm{Nm})=27.0 \quad$ Stall torque $(\mathrm{Nm})=9.0 \quad$ Rated torque $(\mathrm{Nm})=5.7$

095U2C4000

Peak torque $(\mathrm{Nm})=17.7 \quad$ Stall torque $(\mathrm{Nm})=5.9 \quad$ Rated torque $(\mathrm{Nm})=4.0$

Industrial Automation

095U2A6000

Peak torque $(\mathrm{Nm})=6.9 \quad$ Stall torque $(\mathrm{Nm})=2.3 \quad$ Rated torque $(\mathrm{Nm})=1.3$

095U2B6000

Peak torque $(\mathrm{Nm})=12.9 \quad$ Stall torque $(\mathrm{Nm})=4.3 \quad$ Rated torque $(\mathrm{Nm})=2.1$

Peak torque $(\mathrm{Nm})=17.7 \quad$ Stall torque $(\mathrm{Nm})=5.9 \quad$ Rated torque $(\mathrm{Nm})=2.8$

115U2A2000

Peak torque $(\mathrm{Nm})=10.5 \quad$ Stall torque $(\mathrm{Nm})=3.5 \quad$ Rated torque $(\mathrm{Nm})=3.2$

115U2B2000

Peak torque $(\mathrm{Nm})=19.8 \quad$ Stall torque $(\mathrm{Nm})=6.6 \quad$ Rated torque $(\mathrm{Nm})=6.1$

115U2D2000

Peak torque $(\mathrm{Nm})=37.2 \quad$ Stall torque $(\mathrm{Nm})=12.4 \quad$ Rated torque $(\mathrm{Nm})=10.8$

115U2E2000

Peak torque $(\mathrm{Nm})=45.9 \quad$ Stall torque $(\mathrm{Nm})=15.3 \quad$ Rated torque $(\mathrm{Nm})=14.0$

115U2C2000

Peak torque $(\mathrm{Nm})=28.2 \quad$ Stall torque $(\mathrm{Nm})=9.4 \quad$ Rated torque $(\mathrm{Nm})=8.7$

115U2A3000

Peak torque $(\mathrm{Nm})=10.5 \quad$ Stall torque $(\mathrm{Nm})=3.5 \quad$ Rated torque $(\mathrm{Nm})=3.0$

115U2B3000

Peak torque $(\mathrm{Nm})=19.8 \quad$ Stall torque $(\mathrm{Nm})=6.6 \quad$ Rated torque $(\mathrm{Nm})=5.5$

115 U C3000

Peak torque $(\mathrm{Nm})=28.2 \quad$ Stall torque $(\mathrm{Nm})=9.4 \quad$ Rated torque $(\mathrm{Nm})=8.1$

115U2D3000

Peak torque $(\mathrm{Nm})=37.4 \quad$ Stall torque $(\mathrm{Nm})=12.4 \quad$ Rated torque $(\mathrm{Nm})=10.4$

115U2E3000

Peak torque $(\mathrm{Nm})=45.9 \quad$ Stall torque $(\mathrm{Nm})=15.3 \quad$ Rated torque $(\mathrm{Nm})=12.6$

Peak torque $(\mathrm{Nm})=10.5 \quad$ Stall torque $(\mathrm{Nm})=3.5 \quad$ Rated torque $(\mathrm{Nm})=2.5$

115U2B4000

Peak torque $(\mathrm{Nm})=19.8 \quad$ Stall torque $(\mathrm{Nm})=6.6 \quad$ Rated torque $(\mathrm{Nm})=4.7$

115U2D4000

Peak torque $(\mathrm{Nm})=37.2 \quad$ Stall torque $(\mathrm{Nm})=12.4 \quad$ Rated torque $(\mathrm{Nm})=7.5$

115 U E4000

Peak torque $(\mathrm{Nm})=45.9 \quad$ Stall torque $(\mathrm{Nm})=15.3 \quad$ Rated torque $(\mathrm{Nm})=8.7$

115U2C4000

Peak torque $(\mathrm{Nm})=28.2 \quad$ Stall torque $(\mathrm{Nm})=9.4 \quad$ Rated torque $(\mathrm{Nm})=6.3$

EMERSON

Industrial Automation

115U2A6000

Peak torque $(\mathrm{Nm})=10.5 \quad$ Stall torque $(\mathrm{Nm})=3.5 \quad$ Rated torque $(\mathrm{Nm})=2.2$

115U2B6000

Peak torque $(\mathrm{Nm})=19.8 \quad$ Stall torque $(\mathrm{Nm})=6.6$
Rated torque $(\mathrm{Nm})=4.0$

Peak torque $(\mathrm{Nm})=17.1 \quad$ Stall torque $(\mathrm{Nm})=5.7 \quad$ Rated torque $(\mathrm{Nm})=5.3$

142U2B2000

Peak torque $(\mathrm{Nm})=32.4 \quad$ Stall torque $(\mathrm{Nm})=10.8 \quad$ Rated torque $(\mathrm{Nm})=10.3$

142U2D2000

Peak torque $(\mathrm{Nm})=59.4 \quad$ Stall torque $(\mathrm{Nm})=19.8 \quad$ Rated torque $(\mathrm{Nm})=18.4$

142U2E2000

Peak torque $(\mathrm{Nm})=70.4 \quad$ Stall torque $(\mathrm{Nm})=23.4 \quad$ Rated torque $(\mathrm{Nm})=21.3$

142U2C2000

Peak torque $(\mathrm{Nm})=45.9 \quad$ Stall torque $(\mathrm{Nm})=15.3 \quad$ Rated torque $(\mathrm{Nm})=14.6$

142U2A3000

Peak torque $(\mathrm{Nm})=17.1 \quad$ Stall torque $(\mathrm{Nm})=5.7 \quad$ Rated torque $(\mathrm{Nm})=4.9$

142U2B3000

Peak torque $(\mathrm{Nm})=32.4 \quad$ Stall torque $(\mathrm{Nm})=10.8 \quad$ Rated torque $(\mathrm{Nm})=9.0$

142U2C3000

Peak torque $(\mathrm{Nm})=45.9 \quad$ Stall torque $(\mathrm{Nm})=15.3 \quad$ Rated torque $(\mathrm{Nm})=12.2$

142U2D3000

Peak torque $(\mathrm{Nm})=59.4 \quad$ Stall torque $(\mathrm{Nm})=19.8 \quad$ Rated torque $(\mathrm{Nm})=15.8$

142U2E3000

Peak torque $(\mathrm{Nm})=70.2 \quad$ Stall torque $(\mathrm{Nm})=23.4 \quad$ Rated torque $(\mathrm{Nm})=18.0$

Peak torque $(\mathrm{Nm})=17.1 \quad$ Stall torque $(\mathrm{Nm})=5.7 \quad$ Rated torque $(\mathrm{Nm})=3.6$

142U2B4000

Peak torque $(\mathrm{Nm})=32.4 \quad$ Stall torque $(\mathrm{Nm})=10.8 \quad$ Rated torque $(\mathrm{Nm})=7.0$

142U2D4000

Peak torque $(\mathrm{Nm})=59.4 \quad$ Stall torque $(\mathrm{Nm})=19.8 \quad$ Rated torque $(\mathrm{Nm})=10.7$

142 U 2 E 4000

Peak torque $(\mathrm{Nm})=70.2 \quad$ Stall torque $(\mathrm{Nm})=23.4 \quad$ Rated torque $(\mathrm{Nm})=12.2$

142U2C4000

Peak torque $(\mathrm{Nm})=45.9 \quad$ Stall torque $(\mathrm{Nm})=15.3 \quad$ Rated torque $(\mathrm{Nm})=8.9$

142U2A6000

Peak torque $(\mathrm{Nm})=17.1 \quad$ Stall torque $(\mathrm{Nm})=5.7 \quad$ Rated torque $(\mathrm{Nm})=2.9$

190U2A2000

Peak torque $(\mathrm{Nm})=\mathbf{2 8 . 2} \quad$ Stall torque $(\mathrm{Nm})=9.6 \quad$ Rated torque $(\mathrm{Nm})=9.3$

190U2B2000

142U2B6000

Peak torque $(\mathrm{Nm})=32.4 \quad$ Stall torque $(\mathrm{Nm})=10.8 \quad$ Rated torque $(\mathrm{Nm})=4.5$

190U2C2000

Peak torque $(\mathrm{Nm})=93.3 \quad$ Stall torque $(\mathrm{Nm})=31.1 \quad$ Rated torque $(\mathrm{Nm})=28.4$

190U2D2000

Peak torque $(\mathrm{Nm})=123.3 \quad$ Stall torque $(\mathrm{Nm})=41.1 \quad$ Rated torque $(\mathrm{Nm})=36.9$
\square Continuous zone ■ Intermittent zone All graphs are a $40^{\circ} \mathrm{C}$ ambient and 400 V drive supply

Peak torque $(\mathrm{Nm})=151.6 \quad$ Stall torque $(\mathrm{Nm})=50.6 \quad$ Rated torque $(\mathrm{Nm})=43.8$

190U2F2000

Peak torque $(\mathrm{Nm})=176.1 \quad$ Stall torque $(\mathrm{Nm})=58.7 \quad$ Rated torque $(\mathrm{Nm})=50.4$

190U2A3000

190U2G2000

Peak torque $(\mathrm{Nm})=198.0 \quad$ Stall torque $(\mathrm{Nm})=\mathbf{6 6 . 0} \quad$ Rated torque $(\mathrm{Nm})=53.0$

190U2H2000

Peak torque $(\mathrm{Nm})=\mathbf{2 1 9 . 6}$ Stall torque $(\mathrm{Nm})=73.2 \quad$ Rated torque $(\mathrm{Nm})=54.7$

190U2B3000

Peak torque $(\mathrm{Nm})=65.4 \quad$ Stall torque $(\mathrm{Nm})=21.8 \quad$ Rated torque $(\mathrm{Nm})=19.5$

190U2C3000

Peak torque $(\mathrm{Nm})=93.3 \quad$ Stall torque $(\mathrm{Nm})=31.1 \quad$ Rated torque $(\mathrm{Nm})=25.0$

190U2D3000

Peak torque $(\mathrm{Nm})=123.3$ Stall torque $(\mathrm{Nm})=41.1 \quad$ Rated torque $(\mathrm{Nm})=33.0$

190U2E3000

190U2F3000

Peak torque $(\mathrm{Nm})=176.1 \quad$ Stall torque $(\mathrm{Nm})=58.7 \quad$ Rated torque $(\mathrm{Nm})=35.0$

190U2G3000

Peak torque $(\mathrm{Nm})=198.0 \quad$ Stall torque $(\mathrm{Nm})=66.0 \quad$ Rated torque $(\mathrm{Nm})=36.0$

190U2H3000

Peak torque $(\mathrm{Nm})=\mathbf{2 1 9 . 6} \quad$ Stall torque $(\mathrm{Nm})=73.2 \quad$ Rated torque $(\mathrm{Nm})=36.8$
\square Continuous zone ■ Intermittent zone All graphs are a $40^{\circ} \mathrm{C}$ ambient and 400 V drive supply

Peak torque $(\mathrm{Nm})=28.8 \quad$ Stall torque $(\mathrm{Nm})=9.6 \quad$ Rated torque $(\mathrm{Nm})=7.0$

190U2B4000

[^1]190U2C4000

Peak torque $(\mathrm{Nm})=93.3 \quad$ Stall torque $(\mathrm{Nm})=31.1 \quad$ Rated torque $(\mathrm{Nm})=21.5$

190U2D4000

Peak torque $(\mathrm{Nm})=123.3 \quad$ Stall torque $(\mathrm{Nm})=41.1 \quad$ Rated torque $(\mathrm{Nm})=29.0$

EMERSON

Industrial Automation

250U2D1000

Peak torque $(\mathrm{Nm})=\mathbf{2 7 6 . 0} \quad$ Stall torque $(\mathrm{Nm})=92.0 \quad$ Rated torque $(\mathrm{Nm})=75.0$

250U2E1000

Peak torque $(\mathrm{Nm})=348.0 \quad$ Stall torque $(\mathrm{Nm})=116.0 \quad$ Rated torque $(\mathrm{Nm})=92.0$

250U2F1000

Peak torque $(\mathrm{Nm})=408.0 \quad$ Stall torque $(\mathrm{Nm})=136.0 \quad$ Rated torque $(\mathrm{Nm})=106.0$

250U2D1500

Peak torque $(\mathrm{Nm})=\mathbf{2 7 6 . 0} \quad$ Stall torque $(\mathrm{Nm})=92.0 \quad$ Rated torque $(\mathrm{Nm})=67.0$

250U2E1500

Peak torque $(\mathrm{Nm})=\mathbf{3 4 8 . 0} \quad$ Stall torque $(\mathrm{Nm})=116.0 \quad$ Rated torque $(\mathrm{Nm})=\mathbf{7 6 . 0}$

250U2F1500

Peak torque $(\mathrm{Nm})=408.0 \quad$ Stall torque $(\mathrm{Nm})=136.0 \quad$ Rated torque $(\mathrm{Nm})=84.0$

Continuous zone ■ Intermittent zone All graphs are a $40^{\circ} \mathrm{C}$ ambient and 400 V drive supply

250U2D2000

Peak torque $(\mathrm{Nm})=\mathbf{2 7 6 . 0} \quad$ Stall torque $(\mathrm{Nm})=92.0 \quad$ Rated torque $(\mathrm{Nm})=65.0$

250U2E2000

Peak torque $(\mathrm{Nm})=\mathbf{3 4 8 . 0} \quad$ Stall torque $(\mathrm{Nm})=116.0 \quad$ Rated torque $(\mathrm{Nm})=73.0$

250U2F2000

250U2D2500

Peak torque $(\mathrm{Nm})=\mathbf{2 7 6 . 0} \quad$ Stall torque $(\mathrm{Nm})=92.0 \quad$ Rated torque $(\mathrm{Nm})=62.0$

250U2E2500

Peak torque $(\mathrm{Nm})=348.0 \quad$ Stall torque $(\mathrm{Nm})=116.0 \quad$ Rated torque $(\mathrm{Nm})=70.0$

250U2F2500

Peak torque $(\mathrm{Nm})=408.0 \quad$ Stall torque $(\mathrm{Nm})=136.0 \quad$ Rated torque $(\mathrm{Nm})=77.0$

EMERSON

Industrial Automation

6.2 Unimotor fm fan blown

075U4D6000

Peak torque $(\mathrm{Nm})=11.70 \quad$ Stall torque $(\mathrm{Nm})=5.2 \quad$ Rated torque $(\mathrm{Nm})=4.0$

115U4D4000

Peak torque $(\mathrm{Nm})=37.20 \quad$ Stall torque $(\mathrm{Nm})=15.2 \quad$ Rated torque $(\mathrm{Nm})=12.0$

095U4D6000

Peak torque $(\mathrm{Nm})=22.50 \quad$ Stall torque $(\mathrm{Nm})=9.0 \quad$ Rated torque $(\mathrm{Nm})=5.8$

115U4E4000

[^2]
142U4C3000

Peak torque $(\mathrm{Nm})=45.90 \quad$ Stall torque $(\mathrm{Nm})=18.90 \quad$ Rated torque $(\mathrm{Nm})=16.1$

190U4C3000

Peak torque $(\mathrm{Nm})=93.30 \quad$ Stall torque $(\mathrm{Nm})=41.0 \quad$ Rated torque $(\mathrm{Nm})=35.5$

142U4E3000

Peak torque $(\mathrm{Nm})=70.20 \quad$ Stall torque $(\mathrm{Nm})=29.5 \quad$ Rated torque $(\mathrm{Nm})=25.0$

190U4E3000

Peak torque $(\mathrm{Nm})=151.6 \quad$ Stall torque $(\mathrm{Nm})=68.0 \quad$ Rated torque $(\mathrm{Nm})=55.0$

190U4F2000

[^3]
6.3 Unimotor hd

055UDA3000

Peak torque $(\mathrm{Nm})=\mathbf{2 . 8 8} \quad$ Stall torque $(\mathrm{Nm})=\mathbf{0 . 7 2} \quad$ Rated torque $(\mathrm{Nm})=\mathbf{0 . 7 0}$

055UDB3000

Peak torque $(\mathrm{Nm})=4.72 \quad$ Stall torque $(\mathrm{Nm})=1.18 \quad$ Rated torque $(\mathrm{Nm})=1.05$

055UDC3000

055UDA6000

Peak torque $(\mathrm{Nm})=2.88 \quad$ Stall torque $(\mathrm{Nm})=\mathbf{0 . 7 2} \quad$ Rated torque $(\mathrm{Nm})=0.68$

055UDB6000

Peak torque $(\mathrm{Nm})=4.72 \quad$ Stall torque $(\mathrm{Nm})=1.18 \quad$ Rated torque $(\mathrm{Nm})=0.90$

055UDC3000

Peak torque $(\mathrm{Nm})=6.60 \quad$ Stall torque $(\mathrm{Nm})=1.65 \quad$ Rated torque $(\mathrm{Nm})=1.48$

067UDA3000

Peak torque $(\mathrm{Nm})=4.35 \quad$ Stall torque $(\mathrm{Nm})=1.45 \quad$ Rated torque $(\mathrm{Nm})=1.40$

067UDB3000

Peak torque $(\mathrm{Nm})=7.65 \quad$ Stall torque $(\mathrm{Nm})=2.55 \quad$ Rated torque $(\mathrm{Nm})=2.45$

067UDC3000

067UDA6000

Peak torque $(\mathrm{Nm})=4.35 \quad$ Stall torque $(\mathrm{Nm})=1.45 \quad$ Rated torque $(\mathrm{Nm})=1.30$

067UDB6000

Peak torque $(\mathrm{Nm})=7.65 \quad$ Stall torque $(\mathrm{Nm})=2.55 \quad$ Rated torque $(\mathrm{Nm})=2.20$

067UDC6000

Peak torque $(\mathrm{Nm})=11.10 \quad$ Stall torque $(\mathrm{Nm})=3.70 \quad$ Rated torque $(\mathrm{Nm})=3.10$

089UDA3000

Peak torque $(\mathrm{Nm})=9.60 \quad$ Stall torque $(\mathrm{Nm})=3.20 \quad$ Rated torque $(\mathrm{Nm})=3.00$

089UDB3000

Peak torque $(\mathrm{Nm})=16.50 \quad$ Stall torque $(\mathrm{Nm})=5.50 \quad$ Rated torque $(\mathrm{Nm})=4.85$

089UDC3000

089UDA4000

Peak torque $(\mathrm{Nm})=9.60 \quad$ Stall torque $(\mathrm{Nm})=3.20 \quad$ Rated torque $(\mathrm{Nm})=2.90$

089UDB4000

Peak torque $(\mathrm{Nm})=16.50 \quad$ Stall torque $(\mathrm{Nm})=5.50 \quad$ Rated torque $(\mathrm{Nm})=4.55$

089UDC4000

Peak torque $(\mathrm{Nm})=\mathbf{2 4 . 0 0} \quad$ Stall torque $(\mathrm{Nm})=8.00 \quad$ Rated torque $(\mathrm{Nm})=6.35$

089UDA6000

Peak torque $(\mathrm{Nm})=9.60 \quad$ Stall torque $(\mathrm{Nm})=3.20 \quad$ Rated torque $(\mathrm{Nm})=2.65$

089UDB6000

Peak torque $(\mathrm{Nm})=16.50 \quad$ Stall torque $(\mathrm{Nm})=5.50 \quad$ Rated torque $(\mathrm{Nm})=3.80$

089UDC6000

[^4]
115UDB2000

Peak torque $(\mathrm{Nm})=30.60 \quad$ Stall torque $(\mathrm{Nm})=10.20 \quad$ Rated torque $(\mathrm{Nm})=8.60$

115 UDC2000

Peak torque $(\mathrm{Nm})=43.80 \quad$ Stall torque $(\mathrm{Nm})=14.60 \quad$ Rated torque $(\mathrm{Nm})=11.90$

115 UDD2000

115 UDB3000

Peak torque $(\mathrm{Nm})=30.60 \quad$ Stall torque $(\mathrm{Nm})=10.20 \quad$ Rated torque $(\mathrm{Nm})=7.70$

115 UDC3000

Peak torque $(\mathrm{Nm})=43.80 \quad$ Stall torque $(\mathrm{Nm})=14.60 \quad$ Rated torque $(\mathrm{Nm})=10.50$

115UDD3000

Peak torque $(\mathrm{Nm})=56.40 \quad$ Stall torque $(\mathrm{Nm})=18.80 \quad$ Rated torque $(\mathrm{Nm})=13.60$

142UDC1500

Peak torque $(\mathrm{Nm})=\mathbf{7 4 . 9 0} \quad$ Stall torque $(\mathrm{Nm})=\mathbf{2 5 . 0 0} \quad$ Rated torque $(\mathrm{Nm})=\mathbf{2 2 . 3 0}$

142 UDC2000

142UDC3000

142UDD1500

Peak torque $(\mathrm{Nm})=\mathbf{9 4 . 5 0} \quad$ Stall torque $(\mathrm{Nm})=\mathbf{3 1 . 5 0} \quad$ Rated torque $(\mathrm{Nm})=\mathbf{2 7 . 0 0}$

142UDD2000

Peak torque $(\mathrm{Nm})=\mathbf{9 4 . 5 0} \quad$ Stall torque $(\mathrm{Nm})=\mathbf{3 1 . 5 0} \quad$ Rated torque $(\mathrm{Nm})=25.70$

142UDD3000

Peak torque $(\mathrm{Nm})=94.50 \quad$ Stall torque $(\mathrm{Nm})=31.50 \quad$ Rated torque $(\mathrm{Nm})=20.90$

EMERSON
Industrial Automation

142UDE1500

Peak torque $(\mathrm{Nm})=114.00 \quad$ Stall torque $(\mathrm{Nm})=38.00 \quad$ Rated torque $(\mathrm{Nm})=31.70$

142 UDE2000

Peak torque $(\mathrm{Nm})=114.00 \quad$ Stall torque $(\mathrm{Nm})=38.00 \quad$ Rated torque $(\mathrm{Nm})=29.60$

142UDE3000

[^5]
190UDC1500

190 UDC2000

Peak torque $(\mathrm{Nm})=156.00 \quad$ Stall torque $(\mathrm{Nm})=52.00 \quad$ Rated torque $(\mathrm{Nm})=42.50$

190UDD1500

190UDF1500

Peak torque $(\mathrm{Nm})=\mathbf{2 5 5 . 0 0} \quad$ Stall torque $(\mathrm{Nm})=85.00 \quad$ Rated torque $(\mathrm{Nm})=\mathbf{6 8 . 5 0}$

EMERSON

Industrial Automation

7 Pulley installation

Large numbers of motors returned for repair have the shafts "knocked back" into the motor. This can be caused by the incorrect fitting of pulleys and coupling etc. to the motor shaft.
This incorrect fitting of pulleys and gears will at least cause damage to the front bearing, reducing the motors working life. In the worst case damage to the encoder (broken disc), or misalignment the resolver rotor will cause the motor to fail immediately.

This section is intended to explain the correct way of fitting parts to the shaft without causing damage. These instructions should be followed in all cases.

When the motor is built in production a go/no-go gauge, which is made to the minimum shaft extension dimension, is used to check that the shaft is correctly placed within the motor housing. This gauge is placed over the shaft and a check is made to ensure that the shaft is fitted correctly.

When a motor is returned from the field this gauge is used once more.

If the shaft has been "knocked back" then it is very quickly noticeable using this check.

For a pulley or gear to be fitted correctly the following procedure must be followed:

The diagram left shows the front face of the Unimotor, when using the following instructions the component hub should be drawn against the shaft reference step, which is in line with the motor reference face.

When fitting a pulley, a system that pushes the pulley down the shaft while pulling the shaft up through the pulley should be applied. A simple technique is to use a bolt with a washer.

Screw the bolt into the tapped hole of the shaft and, while holding the pulley, use it to push the pulley down and pull the shaft through at the same time.

Once the bolt has bottomed out unscrew it and place another washer underneath. Continue this process until the pulley is squeezed home.

Never hammer or force the pulley onto the shaft as this will result in damage to the bearing and or the encoder therefore reducing the life of the motor.

Note.
Circlips were removed from our rotors after an investigation into shafts snapping proved that the groves needed to fit the Circlips weakened the shaft.

Below is a table detailing the tapped hole sizes.

Frame Size	Tapped hole (mm)
55A-C	$M 4 \times 10.0$
$75 A$	$M 4 \times 10.0 / 12.0$
$74 B-95 A$	$M 5 \times 12.5 / 14.5$
95B115C	$M 6 \times 16.0 / 18.0$
115D-142E	$M 8 \times 19.0 / 21.0$
190A-D	$M 12 \times 28.8$

To remove pulleys a two or three legged gear puller must be used.

This tool grips the outer trim of the pulley and, then using the threaded screw of the gear puller against the shaft, the pulley can be raised off the shaft without any force being applied to the motor.

A socket head screw should be screwed into the end of the shaft to protect the thread from damage.

Failure to apply these simple methods may render the motor useless or in need of repair.

8 Declarations

EC DECLARATION OF CONFORMITY

We, the manufacturer:
Control Techniques Dynamics Ltd. (part of Emerson Industrial Automation)
South Way, Walworth Industrial Estate, Andover, Hampshire SP10 5AB, United Kingdom
Tel: +44 (0) 1264387600 Fax: +44 (0) 1264356561
Certify and declare under our sole responsibility that the following products:

Name	Unimotor hd
Description	AC Brushless Permanent Magnet Electric Servo Motors
Catalogue numbers	067UD*********, 070UD*********, 089UD*********, 115UD*********, 067ED********, 070ED*******,
	089ED*********, 115ED*********, 067XD********, 142UD*********, 142ED*********, 142UG ${ }^{* * * * * * * * *, ~}$
	158UG ${ }^{* * * * * * * * * *, ~ 190 U D * * * * * * * * *, ~ 190 E D ~}{ }^{* * * * * * * *, ~ 190 U F ~}{ }^{* * * * * * * * *, ~ 190 E F ~}{ }^{* * * * * * * * *, ~ 190 U H ~}{ }^{* * * * * * * * *, ~}$
	190EH ${ }^{* * * * * * * * *}$

* maybe any number or letter indicating motor options which do not affect this DoC.
+ Added to the right hand side of these part numbers there maybe an additional 6 digits indicating PCD of the mounting register and the shaft diameter. In addition to this there may also be a '-' followed by 4 letters indicating that the motor is a 'special' or a gearbox is fitted.

Comply with the essential requirements and provisions of the Low Voltage Directive 2006/95/EC and of the EMC Directive 2004/108/EC based on the following specifications applied:

EU Harmonised Standards under directive 2006/95/EC: EN 60034-1:2004, EN 60034-5:2001, EN 60034-6:1993, EN 60034-7:1993, EN 60034-8:2007, EN 60034-14:2004, EN 60204-1:2006

EU Harmonised Standards under directive 2004/108/EC: EN 61000-6-2:2005, EN 61000-6-4:2007
Year of CE Marking: 2010

Signed Control Techniques Dynamics Ltd.

Keith Hedges
Managing Director
$5^{\text {th }}$ July 2012

South Way, Walworth Industrial Estate,
Andover, Hampshire SP10 5AB,
United Kingdom
Tel: +44 (0) 1264387600
Fax: +44 (0) 1264356561
-

EC DECLARATION OF CONFORMITY

Manufacturers Name: Control Techniques Dynamics Limited
Manufacturers' Address: South Way, Walworth Industrial Estate, Andover, Hampshire, SP105AB
Declare under our sole responsibility that the Brushless Permanent Magnet Servo Motors described below comply with applicable Health and Safety Requirements of Annex I of the Low Voltage Directive 2006/95/EC and Annex II of the ATEX Directive 94/9/EC and the EMC Directive 2004/108/EC. Confidential technical documentation has been compiled according to the specific requirements of each directive:

Description of product: Brushless Permanent Magnet Servo Motors Types 480V U2, UM/SL, UD 220V E2, EZ, ED.
Standard rating: Frame Size 067 to 250, $480 \mathrm{VAC}, 11.6 \mathrm{~kW}$ maximum, Speed 0-6000 RPM, Thermal Classification: Delta $100^{\circ} \mathrm{C}$.
ATEX rating: Unimotor UM and fm frame size 075 to $190,480 \mathrm{VAC}, 11.6 \mathrm{~kW}$ maximum, Speed 0-3000 RPM, Thermal Classification: Delta $100^{\circ} \mathrm{C}$.
Atex Gas
$\left\langle\varepsilon x\right.$ Ex II 3 G Ex pz T3 $\left(0<T a<40^{\circ} \mathrm{C}\right)$ BSI 09 ATEX 546579X

Atex Dust
 \&x Ex II 3 D ExtD A22 IP65 T $200^{\circ} \mathrm{C}$ BSI 09 ATEX 546579X

The following standards have either been referred to or have been complied with in part or in full:

Reference	Title
EN 60034-1:2004	Rotating electrical machines - Part 1: Rating and performance
EN 60034-5:2001	Rotating electrical machines - Part 5: IP Code
EN 60034-6:1993	Rotating electrical machines - Part 6: IC Rating
EN 60034-7:1993	Rotating electrical machines - Part 7: IM Rating
EN 60034-8:2007	Rotating electrical machines - Part 8: Terminal markings and direction of rotation
EN 60034-14:2004	Rotating electrical machines - Part 14: Mechanical vibration
EN 60204-1:2006	Safety of machinery - Electrical equipment of machines Part1: General requirements
EN 60079-0:2006	Electrical apparatus for explosive gas atmospheres - general requirements
EN 60079-2:2007	Electrical apparatus for explosive gas atmospheres - pressurised enclosures "p"
EN 61241-0:2006	Electrical apparatus for use in the presence of combustible dust - general requirements

Keith Hedges
Managing Director

Control Techniques Dynamics Ltd.
South Way, Walworth Industrial Estate,
Andover, Hampshire SP10 5AB,
United Kingdom
Tel: +44 (0) 1264387600
Fax: +44 (0) 1264356561

[^6]

EC DECLARATION OF CONFORMITY

We, the manufacturer:
Control Techniques Dynamics Ltd. (part of Emerson Industrial Automation)
South Way, Walworth Industrial Estate, Andover, Hampshire SP10 5AB, United Kingdom
Tel: +44 (0) 1264387600 Fax: +44 (0) 1264356561
Certify and declare under our sole responsibility that the following products:

Name	Unimotor FM (Fan Blown)
Description	AC Brushless Permanent Magnet Electric Servo Motors
Catalogue numbers	075U4 and 190

* maybe any number or letter indicating motor options which do not affect this DoC.
+ Added to the right hand side of these part numbers there maybe an additional '-' followed by 4 letters indicating that the motor is a 'special' or has a gearbox is fitted.
Comply with the essential requirements and provisions of the Low Voltage Directive 2006/95/EC and of the EMC Directive 2004/108/EC based on the following specifications applied:

EU Harmonised Standards under directive 2006/95/EC: EN 60034-1:2004, EN 60034-5:2001, EN 60034-6:1993, EN 60034-7:1993, EN 60034-8:2007, EN 60034-14:2004, EN 60204-1:2006

EU Harmonised Standards under directive 2004/108/EC: EN 61000-6-2:2005, EN 61000-6-4:2007
Year of CE Marking: 2010

Signed	Control Techniques Dynamics Ltd. South Way, Walworth Industrial Estate, Andover, Hampshire SP10 5AB, United Kingdom
Tel: +44 (0) 1264 387600 Keith Hedges Fax: +44 (0) 1264 356561 23rd June 2010	

9 General Information

The manufacturer accepts no liability for any consequences resulting from inappropriate, negligent or incorrect installation or adjustment of the optional operating parameters of the equipment or from mismatching the variable speed drive with the motor.

The contents of this guide are believed to be correct at the time of printing. In the interests of a commitment to a policy of continuous development and improvement, the manufacturer reserves the right to change the specification of the product or its performance, or the contents of the guide, without notice.

All rights reserved. No parts of this guide may be reproduced or transmitted in any form or by any means, electrical or mechanical including photocopying, recording or by an information storage or retrieval system, without permission in writing from the publisher.

Control Techniques Drive \& Application Centres

USTRALIA	CZECH REPUBLIC
Melbourne Application Center	Brno Drive Center
T: +613 97381777	T: +420 511180111
controltechniques.au@emerson.com	controltechniques.cz@emerson.com
Sydney Drive Center	DENMAR
$\mathrm{T}:+61298387222$ controltechniques.au@emerson.com T:+4543696100 controltechniques.dk@emerson.com	
AUSTRIA Linz Drive Center	
T: +43 7229789480 controltechniques.at@emerson.com	Angoulême Drive Center T: +33545645454 controltechniques.fr@emerson.com
BELGIUM	
Brussels D	GERMANY
T: +32 15740700	Bonn Drive Cent
controltechniques,be@emerson.com	controltechniques.de@emerson
BRAZIL	
Sorocaba Drive Center	Chemnitz Drive Cent
$\text { T: }+551534138169$	T: +49 372252030 controltechniques.de@emer
Darmstadt Drive Cen	
Toronto Application Center \quad T: +49 6251177	
T: +19059483402	
controltechniques.ca@emerson.com GREECE*	
	Athens Application Center
	T: +0030 21057 86086/088
T: +1 4032538738	
controltechniques.ca@emerson.com	HOLLAND
	Rotterdam Drive Center
CHILE \quad T: +3118442055	
Santiago Application Center controltechniques.nl@enT: +56977089470	
$\mathrm{T}:+56977089470$saleschile.cta@emerson.com INDIA	
saleschile.cta@emerson.com Chennai Drive Center	
CHINA	T: +9144 2496 1123/1130/1083
Shanghai Drive Center	T: +914466918400
$\mathrm{T}:+862134183888$	controltechniques.in@emerson.cor
controltechniques.cn@emerson.com	
	IRELAND
nzhen Application Center	Newbridge Drive Center
+86755 86187287	T: +353 45448200
ontroltechniques.cn@emerson.com	controltechniques.ie@emerson.com

ITALY

Milan Drive Center
T: +39 02575751
controltechniques.it@emerson.com

Vicenza Drive Center T: +39 0444933400 controltechniques.it@emerson.com MALAYSIA Selangor Drive Center T: +603 58916099 controltechniques.my@emerson.com

MEXICO

Mexico City Application Center
T: +52 15533336666
salesmexico.cta@emerson.com

POLAND

Warsaw Application Center
$T+48224589200$

- controltechniques.pl@emerson.com

REPUBLIC OF SOUTH AFRICA

Johannesburg Drive Center
T: +27 114621740
controltechniques.za@emerson.com
Cape Town Application Center
T: +27 215560245
controltechniques.za@emerson.com

RUSSIA

Moscow Application Center
T: +74959819811
controltechniques.ru@emerson.com
SINGAPORE
Singapore Drive Center
$\mathrm{T}:+6565561100$
controltechniques.sg@emerson.com
SLOVAKIA EMERSON A.S
T: +421 327700369
controltechniques.sk@emerson.com

SOUTH KOREA
Seoul Application Center
T: +82 234831605
controltechniques.kr@emerson.com
SPAIN
Barcelona Drive Center
$\mathrm{T}:+34936801661$
controltechniques.es@emerson.com
Bilbao Drive Center
$\mathrm{T}:+34946203646$
controltechniques.es@emerson.com
Valencia Drive Center
$\mathrm{T}:+34961542900$
controltechniques.es@emerson.com

SWEDEN*

Stockholm Application Center T: +46855424100
controltechniques.se@emerson.com

SWITZERLAND

Zurich Drive Center
T: +41562014242
controltechniques.fr.ch@emerson.com
Lausanne Application Center
T: +41 216377070
controltechniques.fr.ch@emerson.com
TAIWAN
Taipei Application Center
T: +886 281617695
controltechniques.tw@emerson.com
THAILAND
Bangkok Drive Center
T: +66 29622099
controltechniques.th@emerson.com

tURKEY

Istanbul Drive Center
T: +90 2164182420
controltechniques.tr@emerson.com

UAF*
Emerson FZE
T: +97148118100
ct.dubai@emerson.com

UNITED KINGDOM
Telford Drive Center
$\mathrm{T}:+441952213700$ controltechniques.uk@emerson.com

USA
Charlotte Application Center T: +1 8008932321
controltechniques.us@emerson.com
Cleveland Drive Center
T: +1 2169012400
controltechniques.us@emerson.com
Detroit Application Center
T: +1 2488822652
controltechniques.us@emerson.com
Minneapolis Drive Center
Americas Headquarters
T: +1 9529958000
controltechniques.us@emerson.com
Portland Drive Center
T: +1 5032662094
controltechniques.us@emerson.com
Providence Application Center
T: +1 4013924256
controltechniques.us@emerson.com

LATIN AMERICA

Miami Application Center
T: +1 9548465082
saleslatinam.cta@emerson.com

Control Techniques Distributors

ARGENTINA

Euro Techniques SA
T: +541143317820 eurotech@eurotechsa.com.ar

BAHRAIN
Emerson FZE
T : +97148118100
ct.bahrain@emerson.com
BULGARIA
BLS - Automation Ltd
T: +359 32968007
info@blsautomation.com

Ingeniería Y Desarrollo
Tecnológico S.A
T: +5627192200 rdunner@idt.cl

COLOMBIA
Sistronic LTDA
$\mathrm{T}:+5725556000$ luis.alvarez@sistronic.com.co

- Redes Electricas S.A. T: +5713647000 Temtronics Hondu alvaro.rodriguez@redeselectricas.com temtronics@amnethn.com

CROATIA HUNGARY

Zigg-Pro d.o.o Control-VH Kft
T: +385 13463000
zigg-pro@zg.htnet.hr

CYPRUS

Acme Industrial Electronic Services Ltd
$\mathrm{T}:+35725332181$ acme@cytanet.com.cy

EGYPT
Samiram
T:+20229703868/+20229703869 samiramz@samiram.com

EL SALVADOR

 Servielectric Industrial S.A. de C.V.T: +503 22781280 aeorellana@gruposervielectric.com

ICELAND

T: +354 5105200
samey@samey.is

INDONESIA

Pt Apikon Indonesia

T: +65 65561100
T: +656556 1100
info.my@controltechniques.com
Pt Yua Esa Sempurna Sejahtera
Pt Yua Esa Sempurna Sejahtera
$\mathrm{T}:+6565561100$
info.my@controltechniques.com info.my@controltechniques.com T: +35621442039 ISRAEL
Dor Drives Systems Ltd T: +972 39007595 info@dor1.co.il

KENYA

Kassam \& Bros Co. Ltd
T: +2542556418
kassambros@africaonline.co.ke

KUWAIT

Emerson FZE
T: +97148118100 ct.kuwait@emerson.com

LATVIA

EMT
T: +3717602026
info@controlvh.hu janis@emt.Iv

LITHUANIA

Elinta UAB
T: +370 37351987
sales@elinta.lt
MALTA
Mekanika Limited T: +35621442039
mfrancica@gasan.com

MEXICO
MELCSA S.A. de CV
T: +52555561 1312 jcervera@melcsa.com

MOROCCO
 Cietec

T: +212 22354948
cietec@cietec.ma
Advanced Motor Control. Ph
T: +64 (0) 274363067

LEBANON Black Box Automation \& Control

Black Box Automation \& Control PHILIPPINES

info@blackboxcontrol.com	Singapore Ltd
T: +65 64688979	

$\begin{array}{ll}\text { T: +64(0)274363067 } \\ \text { info.au@controltechniques.com ct.qatar@e } \\ \text { PERU } & \text { ROMANIA }\end{array}$

SAUDI ARABIA

A. Abunayyan Electric Corp.

T: +96614779111
aec-salesmarketing@
aec-salesmarketing@
abunayyangroup.com
SERBIA \& MONTENEGRO
SERBIA \& MONTENEGRO
Master Inzenjering d.o.o
T: +381 24525235
office@masterinzenjering.rs

SLOVENIA

PSLogatec
T: +386 17508510
ps-log@ps-log.si
TUNISIA
SIA Ben Djemaa \& CIE
T: +216 1332923
bendjemaa@planet.tn
URUGUAY
SECOIN S.A.
T: +5982 2093815
jose.barron@secoin.com.uy
VENEZUELA
Digimex Sistemas C.A
Digimex Sistemas C.A.
$\mathrm{T}:+582435511634$
digimex@digimex.com.ve
VIETNAM
N.Duc Thinh
$\begin{array}{lll}\mathrm{T}:+5112249493 & \mathrm{~T}:+40212550543 & \text { N.Duc Thinh } \\ & \text { T: }+8489490633\end{array}$
artur.mujamed@intech-sa.com office@citautomatizari.ro
infotech@nducthinh.com.vn

[^0]: *142 and 190 frame motors the power plug will be size 1.5

[^1]: Peak torque $(\mathrm{Nm})=65.4 \quad$ Stall torque $(\mathrm{Nm})=21.8 \quad$ Rated torque $(\mathrm{Nm})=17.5$

[^2]: Peak torque $(\mathrm{Nm})=45.90 \quad$ Stall torque $(\mathrm{Nm})=20.1 \quad$ Rated torque $(\mathrm{Nm})=16.1$

[^3]: Peak torque $(\mathrm{Nm})=176.10 \quad$ Stall torque $(\mathrm{Nm})=79.0 \quad$ Rated torque $(\mathrm{Nm})=66.5$

[^4]: Peak torque $(\mathrm{Nm})=\mathbf{2 4 . 0 0} \quad$ Stall torque $(\mathrm{Nm})=8.00$ Rated torque $(\mathrm{Nm})=5.00$

[^5]: Peak torque $(\mathrm{Nm})=114.00 \quad$ Stall torque $(\mathrm{Nm})=38.00 \quad$ Rated torque $(\mathrm{Nm})=23.00$

[^6]: Control Techniques Dynamics operate a quality management system that complies with the requirements of our BS EN ISO 9001:2008 Registered Firm Approval No.FM30610

